i am using sarima() function as below ___________________________________________________________________________________________ sarima=function(data,p,d,q,P=0,D=0,Q=0,S=-1,tol=.001){ n=length(data) constant=1:n xmean=matrix(1,n,1) if (d>0 & D>0) fitit=arima(data, order=c(p,d,q), seasonal=list(order=c(P,D,Q), period=S), optim.control=list(trace=1,REPORT=1,reltol=tol)) if (d>0 & D==0) fitit=arima(data, order=c(p,d,q), seasonal=list(order=c(P,D,Q), period=S), xreg=constant,include.mean=F, optim.control=list(trace=1,REPORT=1,reltol=tol)) if (d==0 & D==0) fitit=arima(data, order=c(p,d,q), seasonal=list(order=c(P,D,Q), period=S), xreg=xmean,include.mean=F, optim.control=list(trace=1,REPORT=1,reltol=tol)) if (d==0 & D>0) fitit=arima(data, order=c(p,d,q), seasonal=list(order=c(P,D,Q), period=S), xreg=constant,include.mean=F, optim.control=list(trace=1,REPORT=1,reltol=tol)) if (S < 0) goof=20 else goof=3*S tsdiag(fitit,gof.lag=goof) k=length(fitit$coef) BIC=log(fitit$sigma2)+(k*log(n)/n) AICc=log(fitit$sigma2)+((n+k)/(n-k-2)) AIC=log(fitit$sigma2)+((n+2*k)/n) innov<<-fitit$resid list(fit=fitit, AIC=AIC, AICc=AICc, BIC=BIC) } -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- it takes 1-2 minutes for one time series,i have 4500 times series data,how to increase speed/time of execution is there any concept of threading/parallel computing in R Please..Please.....can u suggest me code for above function,which will be time efficient,i am frustrated with time consumption & reading material on parallel computing, but i cant understand it properly
-- View this message in context: http://r.789695.n4.nabble.com/how-to-increase-speed-for-function-time-efficiency-of-below-function-tp4515201p4515201.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.