On Sun, Mar 25, 2012 at 10:20 PM, Thomas Adams <thomas.ad...@noaa.gov> wrote: > Gabor, > > Thank you for your help -- it did help me a lot. However, with my data: > > lead_time cycle r_squared fcst_date > 1 6 0 5.405095e-02 07/31/2010 > 2 12 0 5.521620e-06 07/31/2010 > 3 18 0 1.565910e-04 07/31/2010 > 4 24 0 8.646822e-02 07/31/2010 > 5 30 0 1.719604e-02 07/31/2010 > 6 36 0 5.768113e-04 07/31/2010 > 7 42 0 2.501269e-06 07/31/2010 > 8 48 0 6.451727e-02 07/31/2010 > 9 6 12 2.857931e-01 07/31/2010 > 10 12 12 1.138635e-01 07/31/2010 > 11 18 12 2.225503e-02 07/31/2010 > 12 24 12 1.182031e-03 07/31/2010 > 13 30 12 8.841142e-04 07/31/2010 > 14 36 12 1.082490e-01 07/31/2010 > 15 42 12 1.502887e-05 07/31/2010 > 17 6 0 8.689588e-02 08/01/2010 > 18 12 0 5.884336e-04 08/01/2010 > 19 18 0 2.219316e-07 08/01/2010 > 20 24 0 3.960752e-02 08/01/2010 > 21 30 0 1.087413e-04 08/01/2010 > 23 42 0 3.583030e-07 08/01/2010 > 24 48 0 2.907109e-05 08/01/2010 > 25 6 12 8.693451e-02 08/01/2010 > 26 12 12 3.208215e-02 08/01/2010 > 27 18 12 0.000000e+00 08/01/2010 > 28 6 0 2.962669e-02 08/02/2010 > 29 6 12 2.363506e-05 08/02/2010 > 30 12 12 9.050178e-03 08/02/2010 > > from: > >> z <- read.zoo(q,index = 4, FUN = as.yearmon, format = "%m/%d/%Y",aggregate >> = mean) > > I get: >> z > lead_time cycle r_squared > Jul 2010 25.60000 5.600000 0.05034771 > Aug 2010 18.46154 4.615385 0.02191903 > > what I need is to NOT have the lead_time and cycle averaged, but only have > the r_squared values averaged by lead_time and cycle. I can not seem to > figure out the correct syntax to do this. I assume I use something like: > > q_agg<-aggregate(q,by=list(q$lead_time,q$cycle),index = 4, FUN = as.yearmon, > format = "%m/%d/%Y") > > but I get errors or nonsense when I follow with... > > z <- read.zoo(q_agg,index = 4, FUN = as.yearmon, format = > "%m/%d/%Y",aggregate = mean) > > or some variation of this. > > Regards, > Tom > > > > On Sat, Mar 24, 2012 at 10:58 PM, Gabor Grothendieck > <ggrothendi...@gmail.com> wrote: >> >> On Sat, Mar 24, 2012 at 10:44 PM, Thomas Adams <thomas.ad...@noaa.gov> >> wrote: >> > All: >> > >> > I have a SQlite database where I have stored some verification data by >> > date >> > & time (cycle Z/UTC), lead_time as well as type, duration, etc. I would >> > like to analyze & plot the data as monthly averages. I have looked at a >> > bunch of examples which use some combination of zoo and aggregate, but I >> > have not been able to successfully apply bits and pieces from the >> > examples >> > I have found. Any help is appreciated. BTW, I calculate mae (mean >> > absolute >> > error), mse (mean squared error), me (mean error), and other measures >> > obtained by using the R verification package. >> > >> > The example below is limited to 20 records and shows lead_time, >> > r_squared, >> > (forecast) cycle, fcst_date (forecast date) -- the full data set is just >> > over 2 years of daily data with 3 forecast cycles (00Z, 12Z, and 18Z) >> > daily. >> > >> > >From my query, below) how do I construct an appropriate data structure >> > to >> > analyze & plot the data as monthly averages? >> > >> > Regards, >> > Tom >> > >> >> q<-dbGetQuery(con,"select lead_time,r_squared,cycle,fcst_date from >> > verify_table where duration=6 limit 20") >> >> q >> > lead_time r_squared cycle fcst_date >> > 1 6 5.405095e-02 00 07/31/2010 >> > 2 12 5.521620e-06 00 07/31/2010 >> > 3 18 1.565910e-04 00 07/31/2010 >> > 4 24 8.646822e-02 00 07/31/2010 >> > 5 30 1.719604e-02 00 07/31/2010 >> > 6 36 5.768113e-04 00 07/31/2010 >> > 7 42 2.501269e-06 00 07/31/2010 >> > 8 48 6.451727e-02 00 07/31/2010 >> > 9 6 2.857931e-01 12 07/31/2010 >> > 10 12 1.138635e-01 12 07/31/2010 >> > 11 18 2.225503e-02 12 07/31/2010 >> > 12 24 1.182031e-03 12 07/31/2010 >> > 13 30 8.841142e-04 12 07/31/2010 >> > 14 36 1.082490e-01 12 07/31/2010 >> > 15 42 1.502887e-05 12 07/31/2010 >> > 16 48 NA 12 07/31/2010 >> > 17 6 8.689588e-02 00 08/01/2010 >> > 18 12 5.884336e-04 00 08/01/2010 >> > 19 18 2.219316e-07 00 08/01/2010 >> > 20 24 3.960752e-02 00 08/01/2010 >> > >> >> Try this: >> >> Lines <- "lead_time r_squared cycle fcst_date >> 1 6 5.405095e-02 00 07/31/2010 >> 2 12 5.521620e-06 00 07/31/2010 >> 3 18 1.565910e-04 00 07/31/2010 >> 4 24 8.646822e-02 00 07/31/2010 >> 5 30 1.719604e-02 00 07/31/2010 >> 6 36 5.768113e-04 00 07/31/2010 >> 7 42 2.501269e-06 00 07/31/2010 >> 8 48 6.451727e-02 00 07/31/2010 >> 9 6 2.857931e-01 12 07/31/2010 >> 10 12 1.138635e-01 12 07/31/2010 >> 11 18 2.225503e-02 12 07/31/2010 >> 12 24 1.182031e-03 12 07/31/2010 >> 13 30 8.841142e-04 12 07/31/2010 >> 14 36 1.082490e-01 12 07/31/2010" >> >> library(zoo) >> q <- read.table(text = Lines) >> >> z <- read.zoo(q, index = 4, FUN = as.yearmon, format = "%m/%d/%Y", >> aggregate = mean) >> plot(z) >> >> See the 5 vignettes that come with zoo as well as ?read.zoo, ?plot.zoo >> and ?xyplot.zoo >> >> >> -- >> Statistics & Software Consulting >> GKX Group, GKX Associates Inc. >> tel: 1-877-GKX-GROUP >> email: ggrothendieck at gmail.com > > > > > -- > > Thomas E Adams > National Weather Service > Ohio River Forecast Center > 1901 South State Route 134 > Wilmington, OH 45177 > > EMAIL: thomas.ad...@noaa.gov > > VOICE: 937-383-0528 > FAX: 937-383-0033 > >
Regarding the revised question: library(zoo) # yearmon library(chron) # chron library(ggplot2) # qplot q <- read.table(text = Lines, as.is = TRUE) # aggregate by lead_time, cycle and year/month q.ag <- aggregate(r_squared ~., transform(q, fcst_date = as.Date(as.yearmon(chron(fcst_date)))), mean) # plot in cycle by lead_time grid qplot(fcst_date, r_squared, data = q.ag) + facet_grid(cycle ~ lead_time) See ?aggregate and the ggplot2 package documentation . -- Statistics & Software Consulting GKX Group, GKX Associates Inc. tel: 1-877-GKX-GROUP email: ggrothendieck at gmail.com ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.