Hi there, I have a linear model with one factor having three levels. I want to check if the different levels significantly differ from the overall mean (using contr.sum). However one level (the last) is omitted in the standard procedure.
To illustrate this: x <- as.factor(c(1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3)) y <- c(1.1,1.15,1.2,1.1,1.1,1.1,1.2,1.2,1.2,2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,3,3.1) test <- data.frame(x,y) reg1 <- lm(y~C(x,contr.sum),data=test) summary(reg1) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.63333 0.06577 24.834 8.48e-15 *** C(x, contr.sum)1 -0.48333 0.10792 -4.479 0.00033 *** C(x, contr.sum)2 -0.48333 0.08936 -5.409 4.70e-05 *** Is it possible to get the effect for the third level (against the overall mean) in the table too. I figured out: reg2 <- lm(y~C(relevel(x,3),contr.sum),data=test) summary(reg2) C(relevel(x, 3), contr.sum)1 0.96667 0.07951 12.158 8.24e-10 *** C(relevel(x, 3), contr.sum)2 -0.48333 0.10792 -4.479 0.00033 *** The first row now test the third level against the overall mean, but I find this approach not so convenient. Moreover, I wonder if it is meaningful at all regarding the cumulation of alpha error. Would a Bonferroni correction be sensible? Greetings and thanks in advance Jürgen ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.