Dear all How should one proceed when estimating nested models containing missing data. What I would like to do is to first estimate the model with the control variables only, and then estimate the model containing also the variables of interest. For example, > summary(reg.a <- lm(IMC ~ STYLE + SEXE + AGE, imc))
Call: lm(formula = IMC ~ STYLE + SEXE + AGE, data = imc) Residuals: Min 1Q Median 3Q Max -10.720 -2.428 -0.550 1.712 32.206 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 24.85878 0.23407 106.202 <2e-16 *** STYLE 0.09544 0.12057 0.792 0.429 SEXE -1.82998 0.11490 -15.926 <2e-16 *** AGE 0.45665 0.02839 16.087 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.746 on 5969 degrees of freedom (576 observations deleted due to missingness) Multiple R-squared: 0.07776, Adjusted R-squared: 0.07729 F-statistic: 167.8 on 3 and 5969 DF, p-value: < 2.2e-16 > summary(reg.b <- update(reg.a, . ~ . + DEMANDEC + LATITUDEC + SUPSUPC)) Call: lm(formula = IMC ~ STYLE + SEXE + AGE + DEMANDEC + LATITUDEC + SUPSUPC, data = imc) Residuals: Min 1Q Median 3Q Max -10.687 -2.424 -0.552 1.677 32.258 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 24.91600 0.24010 103.773 <2e-16 *** STYLE 0.10165 0.12455 0.816 0.4144 SEXE -1.87195 0.11654 -16.063 <2e-16 *** AGE 0.45543 0.02932 15.530 <2e-16 *** DEMANDEC 0.22041 0.10960 2.011 0.0444 * LATITUDEC -0.27378 0.11106 -2.465 0.0137 * SUPSUPC -0.14235 0.08169 -1.743 0.0815 . --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 3.739 on 5785 degrees of freedom (757 observations deleted due to missingness) Multiple R-squared: 0.08293, Adjusted R-squared: 0.08197 F-statistic: 87.18 on 6 and 5785 DF, p-value: < 2.2e-16 Note that both have been estimated on different samples. If I try the following I get an error: > anova(reg.a, reg.b) Error in anova.lmlist(object, ...) : models were not all fitted to the same size of dataset Should I reverse the order of calls? Should I always first estimate the complete model, and then the model containing only the control vars? Regards Liviu -- Do you know how to read? http://www.alienetworks.com/srtest.cfm http://goodies.xfce.org/projects/applications/xfce4-dict#speed-reader Do you know how to write? http://garbl.home.comcast.net/~garbl/stylemanual/e.htm#e-mail ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.