On 14-03-2012, at 13:00, sagarnikam123 wrote:

> yes,but i want AIC value to calculate for below value, using frequency =1 in
> ts() function
>> t 
> -0.15264004 
> 0.056076439 
> -0.07276116 
> -0.00917326 
> -0.02069089 
> -0.00416232 
> -0.07225855 
> -0.02654577 
> -0.06131410 
> -0.09380202 
> 0.057414014 
> -0.05239976 
> 0.014397612 
> 0.016145161 
> -0.00670587 
> 0.018696335 
> 0.036943654 
> -0.02450233 
> 0.031161705 
> 0.006513503 
> -0.02892329 
> -0.00831519 
> -0.00877744 
> -0.00634399 
> -0.02612019 
> -0.02531800 
> -0.01435533 
> 0.011148840 
> -0.01893775 
> 0.029859128 
> 0.029878797 
> -0.00125987 
> 0.031404385 
> 0.035127606 
> -0.00191775 
> 0.059797202 
> -0.03268047 
> -0.06026960 
> -0.02216465 
> -0.08145612 
> -0.02772806 
> -0.03171683 
> -0.02842562 
> -0.11807898 
> -0.01457311 
> -0.12612482 
> 0.409631265 
> -0.06375234 
> 
> 
> in short, i want to know which is best model if i have this type of
> vectors(t) 200,each having 400 observations at respective time i.e.
> 1,2,3,4.....400
> 
You seem to be changing what you want.
First you wanted seasonal decomposition, you got answers and now you've changed 
the goal(post).

Well my final answer is look at the forecast package. Maybe auto.arima is what 
you want.

Berend

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to