Using R-studio, I am trying to run a structural equation model and I am running into problems with testing my primary model. Once I specify everything and try to run it I get this error:
Error in eigen(S, symmetric = TRUE, only.values = TRUE) : 0 x 0 matrix And when I look at the object for my primary model in my workspace, which is created after I specify it, it lists all my model components, but has a whole bunch of 'NA' values listed after my components. I have no idea why they are listed there because I omitted all of the 'NA' values from my data and can verify this by a visual inspection. Here is my specified model: # Primary model wellbeing.model <- specifyModel() belonging -> optimism, path1 autonomy -> optimism, path2 optimism -> wellbeing, path3 belonging -> belonging_hapmar, patha belonging -> belonging_attend, pathb belonging -> belonging_cowrkint, pathc autonomy -> autonomy_overwork, pathd autonomy -> autonomy_famwkoff, pathe autonomy -> autonomy_hrsrelax, pathf optimism -> optimism_confinan, pathg optimism -> optimism_goodlife, pathh optimism -> optimis_conlegis, pathi wellbeing -> wellbeing_happy, pathj wellbeing -> wellbeing_health, pathk wellbeing -> wellbeing_life, pathl belonging <-> autonomy, covariance1 autonomy_overwork <-> autonomy_famwkoff, covariance2 autonomy_overwork <-> autonomy_hrsrelax, covariance3 autonomy_hrsrelax <-> autonomy_famwkoff, covariance4 belonging <-> belonging, variance1 autonomy <-> autonomy, variance2 optimism <-> optimism, disturbance1 optimism_confinan <-> optimism_goodlife, disturbance2 optimism_goodlife <-> optimism_conlegis, disturbance3 optimism_confinan <-> optimism_conlegis, disturbance4 wellbeing <-> wellbeing, disturbance5 wellbeing_happy <-> wellbeing_health, disturbance6 wellbeing_happy <-> wellbeing_life, disturbance7 wellbeing_health <-> wellbeing_life, disturbance8 wellbeing.analysis <- sem( wellbeing.model, gss.data.cov, nrow(gss.data_C) ) summary( wellbeing.analysis ) stdCoef( wellbeing.analysis ) effects( wellbeing.analysis ) pathDiagram( wellbeing.analysis, "WellbeingPathModel", standardize=TRUE, edge.labels="values" ) And here are my model components once specified: structure(c("belonging -> optimism", "autonomy -> optimism", "optimism -> wellbeing", "belonging -> belonging_hapmar", "belonging -> belonging_attend", "belonging -> belonging_cowrkint", "autonomy -> autonomy_overwork", "autonomy -> autonomy_famwkoff", "autonomy -> autonomy_hrsrelax", "optimism -> optimism_confinan", "optimism -> optimism_goodlife", "optimism -> optimis_conlegis", "wellbeing -> wellbeing_happy", "wellbeing -> wellbeing_health", "wellbeing -> wellbeing_life", "belonging <-> autonomy", "autonomy_overwork <-> autonomy_famwkoff", "autonomy_overwork <-> autonomy_hrsrelax", "autonomy_hrsrelax <-> autonomy_famwkoff", "belonging <-> belonging", "autonomy <-> autonomy", "optimism <-> optimism", "optimism_confinan <-> optimism_goodlife", "optimism_goodlife <-> optimism_conlegis", "optimism_confinan <-> optimism_conlegis", "wellbeing <-> wellbeing", "wellbeing_happy <-> wellbeing_health", "wellbeing_happy <-> wellbeing_life", "wellbeing_health <-> wellbeing_life", "belonging_hapmar <-> belonging_hapmar", "belonging_attend <-> belonging_attend", "belonging_cowrkint <-> belonging_cowrkint", "autonomy_overwork <-> autonomy_overwork", "autonomy_famwkoff <-> autonomy_famwkoff", "autonomy_hrsrelax <-> autonomy_hrsrelax", "optimism_confinan <-> optimism_confinan", "optimism_goodlife <-> optimism_goodlife", "optimis_conlegis <-> optimis_conlegis", "wellbeing_happy <-> wellbeing_happy", "wellbeing_health <-> wellbeing_health", "wellbeing_life <-> wellbeing_life", "path1", "path2", "path3", "patha", "pathb", "pathc", "pathd", "pathe", "pathf", "pathg", "pathh", "pathi", "pathj", "pathk", "pathl", "covariance1", "covariance2", "covariance3", "covariance4", "variance1", "variance2", "disturbance1", "disturbance2", "disturbance3", "disturbance4", "disturbance5", "disturbance6", "disturbance7", "disturbance8", "V[belonging_hapmar]", "V[belonging_attend]", "V[belonging_cowrkint]", "V[autonomy_overwork]", "V[autonomy_famwkoff]", "V[autonomy_hrsrelax]", "V[optimism_confinan]", "V[optimism_goodlife]", "V[optimis_conlegis]", "V[wellbeing_happy]", "V[wellbeing_health]", "V[wellbeing_life]", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), .Dim = c(41L, 3L), class = "semmod") I have no idea where the 'NA' values are coming from. Any help would be most appreciated! - Jessica -- View this message in context: http://r.789695.n4.nabble.com/SEM-eigen-value-error-0-X-0-matrix-tp4465139p4465139.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.