Hi All,

 

I would like to compute the simple finite-difference approximation to the
gradient of a scalar function of a large number of variables (on the order
of 1000).  Although a one-time computation using the following function
grad() is fast and simple enough, the overhead for repeated evaluation of
gradient in iterative schemes is quite significant.  I was wondering whether
there are better, more efficient ways to approximate the gradient of a large
scalar function in R. 

 

Here is an example.  

 

grad <- function(x, fn=func, eps=1.e-07, ...){

      npar <- length(x)

      df <- rep(NA, npar)

      f <- fn(x, ...)

        for (i in 1:npar) {

            dx <- x

            dx[i] <- dx[i] + eps

            df[i] <- (fn(dx, ...) - f)/eps

        }

      df 

}

 

 

myfunc <- function(x){

nvec <- 1: length(x)

sum(nvec * (exp(x) - x)) / 10

}

 

myfunc.g <- function(x){

nvec <- 1: length(x)

nvec * (exp(x) - 1) / 10

}

 

p0 <- rexp(1000)

system.time(g.1 <- grad(x=p0, fn=myfunc))[1]

system.time(g.2 <- myfunc.g(x=p0))[1]

max(abs(g.2 - g.1))

 

 

Thanks in advance for any help or hints.

 

Ravi.

----------------------------------------------------------------------------
-------

Ravi Varadhan, Ph.D.

Assistant Professor, The Center on Aging and Health

Division of Geriatric Medicine and Gerontology 

Johns Hopkins University

Ph: (410) 502-2619

Fax: (410) 614-9625

Email: [EMAIL PROTECTED]

Webpage:  http://www.jhsph.edu/agingandhealth/People/Faculty/Varadhan.html

 

----------------------------------------------------------------------------
--------

 


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to