Hi, On Wed, Feb 29, 2012 at 9:52 AM, Blaz Simcic <blazsim...@yahoo.com> wrote: > Dear R buddies, > I’m trying to run Principal Component Analysis, package > princomp: > http://stat.ethz.ch/R-manual/R-patched/library/stats/html/princomp.html.
I'm going to assume you actually mean the princomp() function. > My question is: why do I get different results with pca = > princomp (x, cor = TRUE) and pca = princomp (x, cor = FALSE) even when I > standardize variables in my matrix? Because you didn't use the standardization that's used in princomp, most likely, but you don't include reproducible code so it's impossible to actually answer your question. Look at this for ideas, though. Using scale() is equivalent to using cor=TRUE. > data(iris) > iris.pcaCOR <- princomp(iris[,1:4], cor=TRUE) > iris.pcaSCALE <- princomp(scale(iris[,1:4]), cor=TRUE) > > summary(iris.pcaCOR) Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Standard deviation 1.7083611 0.9560494 0.38308860 0.143926497 Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709 Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000 > summary(iris.pcaSCALE) Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Standard deviation 1.7083611 0.9560494 0.38308860 0.143926497 Proportion of Variance 0.7296245 0.2285076 0.03668922 0.005178709 Cumulative Proportion 0.7296245 0.9581321 0.99482129 1.000000000 -- Sarah Goslee http://www.functionaldiversity.org ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.