The code below shows that (1) the way to activate the parallel backend indeed is to use 'registerDoMC' (2) the function d_ply does NOT accept the argument parallel, while the function ddply does. Perhaps it is interesting to add this feature to d_ply, l_ply and a_ply too? As a workaround one can off course use the function ddply with a dummy return value.
# df & function myDf = data.frame(a=factor(1:10), b=factor(1:10), c=1:10) tryFun1 = function(myDf){ Sys.sleep(1) return(mean(myDf$c)) } # ddply ddply(.data=myDf, .variables=c('a', 'b'), .fun=tryFun, .progress='text') registerDoMC() getDoParWorkers() ddply(.data=myDf, .variables=c('a', 'b'), .fun=tryFun, .progress='text', .parallel=TRUE) # d_ply d_ply(.data=myDf, .variables=c('a', 'b'), .fun=tryFun, .progress='text') registerDoMC() d_ply(.data=myDf, .variables=c('a', 'b'), .fun=tryFun, .progress='text', .parallel=TRUE) Greetz, Adi -- View this message in context: http://r.789695.n4.nabble.com/parallel-computation-in-plyr-1-7-tp4289556p4289833.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.