Hello Richard,
Thank you so much for getting back to me. In the ?glht example, the confidence intervals are the same and the p-values are very similar. I ran a 2-way ANOVA and compared the results for the glht code with "Tukey" and TukeyHSD for "Treatment", which was a significant main effect (output is below). I found that the p-values for glht and TukeyHSD differed quite a bit. If glht with "Tukey" is just another method to run Tukey HSD, I don't understand why the two methods yeilded different results. If they are not equivalent, how is glht calculating the p-values? I also ran my 2-way ANOVA without the Treatment*Habitat interaction and I found that the glht and TukeyHSD methods did provide the same p-values (I did not include this output). Does this mean that glht is only equivalent to TukeyHSD when non-significant interactions are removed? Should I be removing all of my non-significant interaction terms prior to running post-hoc testing with glht?

Treatment Habitat    pActive
       1G       E 0.18541667
       1G       E 0.02500000
       1G       E 0.04208333
       1G       E 0.14847222
       1G       E 0.08055556
       1G       E 0.16777778
       1G       S 0.05111111
       1G       S 0.19083333
       1G       S 0.12333333
       1G       S 0.35722222
       1G       S 0.43750000
       1G       S 0.02638889
       1R       E 0.38736111
       1R       E 0.51180556
       1R       E 0.14916667
       1R       E 0.61041667
       1R       E 0.36013889
       1R       E 0.11347222
       1R       S 0.10805556
       1R       S 0.18722222
       1R       S 0.27625000
       1R       S 0.25236111
       1R       S 0.18208333
       1R       S 0.16152778
       2G       E 0.25916667
       2G       E 0.37194444
       2G       E 0.02263889
       2G       E 0.18402778
       2G       E 0.45750000
       2G       E 0.02250000
       2G       S 0.02958333
       2G       S 0.10069444
       2G       S 0.12875000
       2G       S 0.11361111
       2G       S 0.13680556
       2G       S 0.07875000
       2R       E 0.57513889
       2R       E 0.12888889
       2R       E 0.32000000
       2R       E 0.55736111
       2R       E 0.78888889
       2R       E 0.65055556
       2R       S 0.35527778
       2R       S 0.48361111
       2R       S 0.21361111
       2R       S 0.35277778
       2R       S 0.52611111
       2R       S 0.29416667
      R+G       E 0.37027778
      R+G       E 0.20263889
      R+G       E 0.07194444
      R+G       E 0.49041667
      R+G       E 0.21847222
      R+G       E 0.13555556
      R+G       S 0.20861111
      R+G       S 0.23986111
      R+G       S 0.02180556
      R+G       S 0.23250000
      R+G       S 0.28916667
      R+G       S 0.50208333

logitpAct<-logit(Active$pActive)
model3<-aov(logitAct~Treatment*Habitat,data=Active)
summary(glht(model3, linfct=mcp(Treatment="Tukey")))

 Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts


Fit: aov(formula = logitAct ~ Treatment * Habitat, data = Active)

Linear Hypotheses:
              Estimate Std. Error t value Pr(>|t|)
1R - 1G == 0    1.6196     0.5936   2.728  0.06369 .
2G - 1G == 0    0.5468     0.5936   0.921  0.88736
2R - 1G == 0    2.3100     0.5936   3.892  0.00264 **
R+G - 1G == 0   1.0713     0.5936   1.805  0.38235
2G - 1R == 0   -1.0728     0.5936  -1.807  0.38095
2R - 1R == 0    0.6904     0.5936   1.163  0.77204
R+G - 1R == 0  -0.5483     0.5936  -0.924  0.88639
2R - 2G == 0    1.7632     0.5936   2.970  0.03516 *
R+G - 2G == 0   0.5245     0.5936   0.884  0.90164
R+G - 2R == 0  -1.2387     0.5936  -2.087  0.24185
---
Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
(Adjusted p values reported -- single-step method)

Warning message:
In mcp2matrix(model, linfct = linfct) :
  covariate interactions found -- default contrast might be inappropriate


TukeyHSD(model3)

 Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = logitAct ~ Treatment * Habitat, data = Active)

$Treatment
               diff        lwr       upr     p adj
1R-1G   0.976208536 -0.2115769 2.1639939 0.1538496
2G-1G   0.008919932 -1.1788655 1.1967053 1.0000000
2R-1G   1.774309645  0.5865243 2.9620950 0.0009174
R+G-1G  0.735518351 -0.4522670 1.9233037 0.4123535
2G-1R  -0.967288603 -2.1550740 0.2204968 0.1605251
2R-1R   0.798101110 -0.3896843 1.9858865 0.3299881
R+G-1R -0.240690185 -1.4284756 0.9470952 0.9783561
2R-2G   1.765389713  0.5776043 2.9531751 0.0009817
R+G-2G  0.726598419 -0.4611870 1.9143838 0.4247935
R+G-2R -1.038791294 -2.2265767 0.1489941 0.1128708


Quoting "Richard M. Heiberger" <r...@temple.edu>:

glht is probably what you should be using.  Both TukeyHSD and glht give
essesntially identical confidence intervals for
the example in ?glht.  What aren't you satisfied with?

amod <- aov(breaks ~ tension, data = warpbreaks)
confint(glht(amod, linfct = mcp(tension = "Tukey")))
TukeyHSD(amod)
On Mon, Jan 2, 2012 at 6:19 PM, Anne Aubut <an438...@dal.ca> wrote:

Hello,

I am trying to determine the most appropriate way to run post-hoc
comparisons on my lme model.  I had originally planned to use Tukey HSD
method as I am interested in all possible comparisons between my treatment
levels.  TukeyHSD, however, does not work with lme.  The only other code
that I was able to find, and which also seems to be widely used, is glht
specified with Tukey:

summary(glht(model, linfct=mcp(Treatment="Tukey"))**)

Out of curiosity, I ran TukeyHSD and the glht code for a simple ANOVA and
found that they had quite different p-values.  If the glht code is not
running TukeyHSD, what does the "Tukey" in the code specify?  Is using glht
code appropriate if I am interested in a substitute for TukeyHSD?  Are
there any other options for multiple comparisons for lme models?  I am
really interested in knowing if the Tukey contrasts generated from the glht
code is providing me with appropriate p-values for my post-hoc comparisons.

I feel like I have reached a dead end and am not sure where else to look
for information on this issue. I would be grateful for any feedback on this
matter.


Anne Cheverie
M.Sc. Candidate
Dalhousie University

______________________________**________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help>
PLEASE do read the posting guide http://www.R-project.org/**
posting-guide.html <http://www.r-project.org/posting-guide.html>
and provide commented, minimal, self-contained, reproducible code.



______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to