Here is a snippet to show what i'm trying to do.

library(randomForest)
library(ROCR)
library(caret)

data(iris)
iris <- iris[(iris$Species != "setosa"),]

fit <- randomForest(factor(Species) ~ ., data=iris, ntree=50)
train.predict <- predict(fit,iris,type="prob")[,2]
plot(performance(prediction(train.predict,factor(iris$Species)),"tpr","fpr"),col = "red")
#As expected AUC is 1 because we are using the same dataset to validate
auc1 <- performance(prediction(train.predict,factor(iris$Species)),"auc")@y.values[[1]] legend("bottomright",legend=c(paste("Random Forests (AUC=",formatC(auc1,digits=4,format="f"),")",sep="")),
                col=c("red"), lty=1)


#Cross validation using 10 fold CV:
ctrl <- trainControl(method = "cv", classProbs = TRUE, summaryFunction = twoClassSummary)

set.seed(1)
rfEstimate <- train(factor(Species) ~ .,data = iris, method = "rf", metric = "ROC", tuneGrid = data.frame(.mtry = 2), trControl = ctrl)
rfEstimate


How can i plot the results from the cross validation on the previous ROC plot ?



thanks,
david

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to