Thank you for you use of HH. I think the right graph for this data is the much simpler ancova function
library(HH) ancova(y ~ year * Trt, data=mydata) where we see that the three treatments have totally different slopes. The WoodEnergy example doesn't apply here. The WoodEnergy example illustrates a way of finding differences among treatments for a fixed value of the covariate when the slopes are similar. Rich On Sun, Dec 11, 2011 at 7:15 AM, Jinsong Zhao <jsz...@yeah.net> wrote: > Hi there, > > The following data is obtained from a long-term experiments. > > > mydata <- read.table(textConnection(" > + y year Trt > + 9.37 1993 A > + 8.21 1995 A > + 8.11 1999 A > + 7.22 2007 A > + 7.81 2010 A > + 10.85 1993 B > + 12.83 1995 B > + 13.21 1999 B > + 13.70 2007 B > + 15.15 2010 B > + 5.69 1993 C > + 5.76 1995 C > + 6.39 1999 C > + 5.73 2007 C > + 5.55 2010 C"), header = TRUE) > > closeAllConnections() > > The experiments is designed without replication, thus I have to use ANCOVA > or linear mixed effect model to analyze the data. In the model, variable > year is coded as a continuous variable, and Trt is factor variable. > > > mydata.aov <- aov(y~Trt*year, mydata) > > anova(mydata.aov) > Analysis of Variance Table > > Response: y > Df Sum Sq Mean Sq F value Pr(>F) > Trt 2 140.106 70.053 197.9581 3.639e-08 *** > year 1 0.610 0.610 1.7246 0.221600 > Trt:year 2 8.804 4.402 12.4387 0.002567 ** > Residuals 9 3.185 0.354 > --- > Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > > As you have seen, the interaction effect is significant. I hope to use > TukeyHSD() or glht() to do multiple comparison on Trt:year. However, for > variable year is not a factor, they all give error messages. > > I try to follow the demo("MMC.WoodEnergy") in HH package, as follwoing: > > > library(HH) > > mca.1993 <- mcalinfct(mydata.aov, "Trt") > > non.zero <- mca.1993[,5:6] != 0 > > mca.1993[,5:6][non.zero] <- 1993 * sign(mca.1993[,5:6][non.zero]) > > summary(glht(mydata.aov, linfct=mca.1993)) > > Simultaneous Tests for General Linear Hypotheses > > Fit: aov(formula = y ~ Trt * year, data = mydata) > > Linear Hypotheses: > Estimate Std. Error t value Pr(>|t|) > B - A == 0 2.8779 0.5801 4.961 0.00215 ** > C - A == 0 -2.8845 0.5801 -4.972 0.00191 ** > C - B == 0 -5.7624 0.5801 -9.933 < 0.001 *** > --- > Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > (Adjusted p values reported -- single-step method) > > It can give comparison between levels of Trt within one year, e.g., 1993. > > Is it possible to do multiple comparison for the following pairs: > > A.1995 - A.1993 > B.1995 - A.1993 > C.1995 - A.1993 > > Any suggestions or comments will be really appreciated. Thanks in advance! > > Regards, > Jinsong > > ______________________________**________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/**listinfo/r-help<https://stat.ethz.ch/mailman/listinfo/r-help> > PLEASE do read the posting guide http://www.R-project.org/** > posting-guide.html <http://www.r-project.org/posting-guide.html> > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.