Hi Florent,

That is great, I was working on solving the recurrence equation and this was part of that equation. Now I know how to put everything together, thanks for all the help e everybody!

Cheers,

On 27/11/2011 2:05 p.m., Florent D. wrote:
You can make things a lot faster by using the recurrence equation

y[n] = alpha * (y[n-1]+x[n])

loopRec<- function(x, alpha){
    n<- length(x)
    y<- numeric(n)
    if (n == 0) return(y)
    y[1]<- alpha * x[1]
    for(i in seq_len(n)[-1]){
       y[i]<- alpha * (y[i-1] + x[i])
    }
    return(y)
}



On Sun, Nov 27, 2011 at 5:17 AM, Michael Kao<mkao006rm...@gmail.com>  wrote:
Dear Enrico,

Brilliant! Thank you for the improvements, not sure what I was thinking using 
rev. I will test it out to see whether it is fast enough for our 
implementation, but your help has been SIGNIFICANT!!!

Thanks heaps!
Michael

On 27/11/2011 10:43 a.m., Enrico Schumann wrote:
Hi Michael

here are two variations of your loop, and both seem faster than the original 
loop (on my computer).


require("rbenchmark")

## your function
loopRec<- function(x, alpha){
    n<- length(x)
    y<- double(n)
    for(i in 1:n){
        y[i]<- sum(cumprod(rep(alpha, i)) * rev(x[1:i]))
    }
    y
}
loopRec(c(1, 2, 3), 0.5)

loopRec2<- function(x, alpha){
    n<- length(x)
    y<- numeric(n)
    for(i in seq_len(n)){
        y[i]<- sum(cumprod(rep.int(alpha, i)) * x[i:1])
    }
    y
}
loopRec2(c(1, 2, 3), 0.5)

loopRec3<- function(x, alpha){
    n<- length(x)
    y<- numeric(n)
    aa<- cumprod(rep.int(alpha, n))
    for(i in seq_len(n)){
        y[i]<- sum(aa[seq_len(i)] * x[i:1])
    }
    y
}
loopRec3(c(1, 2, 3), 0.5)


## Check whether value is correct
all.equal(loopRec(1:1000, 0.5), loopRec2(1:1000, 0.5))
all.equal(loopRec(1:1000, 0.5), loopRec3(1:1000, 0.5))


## benchmark the functions.
benchmark(loopRec(1:1000, 0.5), loopRec2(1:1000, 0.5),
  loopRec3(1:1000, 0.5),
  replications = 50, order = "relative")


... I get
                   test replications elapsed relative user.self sys.self
2 loopRec2(1:1000, 0.5)           50    0.77 1.000000      0.76     0.00
3 loopRec3(1:1000, 0.5)           50    0.86 1.116883      0.85     0.00
1  loopRec(1:1000, 0.5)           50    1.84 2.389610      1.79     0.01


Regards,
Enrico


Am 27.11.2011 01:20, schrieb Michael Kao:
Dear R-help,

I have been trying really hard to generate the following vector given
the data (x) and parameter (alpha) efficiently.

Let y be the output list, the aim is to produce the the following
vector(y) with at least half the time used by the loop example below.

y[1] = alpha * x[1]
y[2] = alpha^2 * x[1] + alpha * x[2]
y[3] = alpha^3 * x[1] + alpha^2 * x[2] + alpha * x[3]
.....

below are the methods I have tried and failed miserably, some are just
totally ridiculous so feel free to have a laugh but would appreciate if
someone can give me a hint. Otherwise I guess I'll have to give RCpp a
try.....


## Bench mark the recursion functions
loopRec<- function(x, alpha){
n<- length(x)
y<- double(n)
for(i in 1:n){
y[i]<- sum(cumprod(rep(alpha, i)) * rev(x[1:i]))
}
y
}

loopRec(c(1, 2, 3), 0.5)

## This is a crazy solution, but worth giving it a try.
charRec<- function(x, alpha){
n<- length(x)
exp.mat<- matrix(rep(x, each = n), nc = n, byrow = TRUE)
up.mat<- matrix(eval(parse(text = paste("c(", paste(paste(paste("rep(0,
", 0:(n - 1), ")", sep = ""),
paste("cumprod(rep(", alpha, ",", n:1, "))", sep = "") , sep = ","),
collapse = ","), ")", sep = ""))), nc = n, byrow = TRUE)
colSums(up.mat * exp.mat)
}
vecRec(c(1, 2, 3), 0.5)

## Sweep is slow, shouldn't use it.
matRec<- function(x, alpha){
n<- length(x)
exp.mat<- matrix(rep(x, each = n), nc = n, byrow = TRUE)
up.mat<- sweep(matrix(cumprod(rep(alpha, n)), nc = n, nr = n,
byrow = TRUE), 1,
c(1, cumprod(rep(1/alpha, n - 1))), FUN = "*")
up.mat[lower.tri(up.mat)]<- 0
colSums(up.mat * exp.mat)
}
matRec(c(1, 2, 3), 0.5)

matRec2<- function(x, alpha){
n<- length(x)
exp.mat<- matrix(rep(x, each = n), nc = n, byrow = TRUE)
up.mat1<- matrix(cumprod(rep(alpha, n)), nc = n, nr = n, byrow = TRUE)
up.mat2<- matrix(c(1, cumprod(rep(1/alpha, n - 1))), nc = n, nr = n)
up.mat<- up.mat1 * up.mat2
up.mat[lower.tri(up.mat)]<- 0
colSums(up.mat * exp.mat)
}

matRec2(c(1, 2, 3), 0.5)

## Check whether value is correct
all.equal(loopRec(1:1000, 0.5), vecRec(1:1000, 0.5))
all.equal(loopRec(1:1000, 0.5), matRec(1:1000, 0.5))
all.equal(loopRec(1:1000, 0.5), matRec2(1:1000, 0.5))

## benchmark the functions.
benchmark(loopRec(1:1000, 0.5), vecRec(1:1000, 0.5), matRec(1:1000, 0.5),
matRec2(1:1000, 0.5), replications = 50,
order = "relative")

Thank you very much for your help.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to