Hello, Rlisters I have to compute p-values that are on the tail of the distribution, P-values < 10^-20.
However, my current implementations enable one to estimate P-values up to 10^-12, or so. A typical example is found below, where t is my critical value. ########### example - code adapted from Rassoc ####################### rho01 = 0.5 rho105 = 0.5 rho005 = 0.5 t = 8 z = 2 w0=(rho005-rho01*rho105)/(1-rho01^2) w1=(rho105-rho01*rho005)/(1-rho01^2) fun1=function(t,z){ return(pnorm((t-rho01*z)/sqrt(1-rho01^2))*dnorm(z)) } fun2=function(t,z){ return(pnorm(((t-w0*z)/w1-rho01*z)/sqrt(1-rho01^2))*dnorm(z)) } fun3=function(t,z){ return(pnorm((-t-rho01*z)/sqrt(1-rho01^2))*dnorm(z)) } asy=function(t){ z1=2*integrate(function(z){fun1(t,z)},lower=0,upper=t*(1-w1)/w0,subdivisions=1000)$value z2=2*integrate(function(z){fun2(t,z)},lower=t*(1-w1)/w0,upper=t,subdivisions=1000)$value z3=-2*integrate(function(z){fun3(t,z)},lower=0,upper=t,subdivisions=500)$value return(z1+z2+z3) } pvalue <- 1-asy(t) pvalue ########################################### Using this script, my critical values can achieve values up to 7.5, or so. Above this cutoff my P-values show up as negative values. Why's that? Grateful for any tips. All the best, Alonso -- View this message in context: http://r.789695.n4.nabble.com/How-to-increase-precision-to-handle-very-low-P-values-tp4100250p4100250.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.