On Nov 07, 2011 at 7:59pm Colin Aitken wrote: > How does R estimate the intercept term \alpha in a loglinear > model with Poisson model and log link for a contingency table of counts?
Colin, If you fitted this using a GLM then the default in R is to use so-called treatment contrasts (i.e. Dunnett contrasts). See ?contr.treatment. Take the first example on the ?glm help page ## Dobson (1990) Page 93: Randomized Controlled Trial : counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) print(d.AD <- data.frame(treatment, outcome, counts)) glm.D93 <- glm(counts ~ outcome + treatment, family=poisson()) anova(glm.D93) summary(glm.D93) < snip > Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) 3.045e+00 1.709e-01 17.815 <2e-16 *** outcome2 -4.543e-01 2.022e-01 -2.247 0.0246 * outcome3 -2.930e-01 1.927e-01 -1.520 0.1285 treatment2 1.338e-15 2.000e-01 0.000 1.0000 treatment3 1.421e-15 2.000e-01 0.000 1.0000 < snip > > levels(outcome) [1] "1" "2" "3" > levels(treatment) [1] "1" "2" "3" So here the intercept represents the estimated counts at the first level of "outcome" (i.e. outcome = 1) and the first level of "treatment" (i.e. treatment = 1). > predict(glm.D93, newdata=data.frame(outcome="1", treatment="1")) 1 3.044522 Regards, Mark. ----- Mark Difford (Ph.D.) Research Associate Botany Department Nelson Mandela Metropolitan University Port Elizabeth, South Africa -- View this message in context: http://r.789695.n4.nabble.com/Estimate-of-intercept-in-loglinear-model-tp4009905p4012346.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.