Hi,

Thanks for the responce, code for each case is as:

c_c_factor <- 0.001  
min_obs_split <- 80

A)

fit <- rpart(segment ~., method="class", 
           control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), 
           data=Beh_cluster_out)

B)
fit <- rpart(segment ~., method="class", 
           control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), 
           data=profile_cluster_out)

 C)
fit <- rpart(decile ~., method="class", 
           control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), 
           data=dtm_ip)

In A and B target variable 'segment' is from the clustering data using same
set of input variables , while in C target variable 'decile' is derived from
behavioural variables and input variables are from profile data. Number of
rows in the input table in all three cases are same.

Regards,
-Ajit


--
View this message in context: 
http://r.789695.n4.nabble.com/Decision-tree-model-using-rpart-classification-tp3989162p3989320.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to