Hi, Thanks for the responce, code for each case is as:
c_c_factor <- 0.001 min_obs_split <- 80 A) fit <- rpart(segment ~., method="class", control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), data=Beh_cluster_out) B) fit <- rpart(segment ~., method="class", control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), data=profile_cluster_out) C) fit <- rpart(decile ~., method="class", control=rpart.control(minsplit=min_obs_split, cp=c_c_factor), data=dtm_ip) In A and B target variable 'segment' is from the clustering data using same set of input variables , while in C target variable 'decile' is derived from behavioural variables and input variables are from profile data. Number of rows in the input table in all three cases are same. Regards, -Ajit -- View this message in context: http://r.789695.n4.nabble.com/Decision-tree-model-using-rpart-classification-tp3989162p3989320.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.