Dear R community, I'm trying to remove a loop from my code but I'm stock and I can't find a good way to do it. Hopefully one of you will have something clever to propose.
Here is a simplified example: I have a squared matrix: > nom.plac2 <- c("102", "103", "301", "303","304", "403") > poids2 <- matrix(NA, 6,6, dimnames=list(nom.plac2,nom.plac2)) > poids2 102 103 301 303 304 403 102 NA NA NA NA NA NA 103 NA NA NA NA NA NA 301 NA NA NA NA NA NA 303 NA NA NA NA NA NA 304 NA NA NA NA NA NA 403 NA NA NA NA NA NA I want to replace some of the NAs following specific criterion included in 2 others matrix: > wei2 <- > matrix(c(.6,.4,.5,.5,.9,.1,.8,.2,.7,.3,.6,.4),6,2,dimnames=list(nom.plac2, > c("p1","p2")),byrow=T) > wei2 p1 p2 102 0.6 0.4 103 0.5 0.5 301 0.9 0.1 303 0.8 0.2 304 0.7 0.3 403 0.6 0.4 > voisin <- matrix(c("103","304", "303", "102", "103" > ,"303","403","304","303","102","103" ,"303"), 6,2,dimnames=list(nom.plac2, c("v1","v2")),byrow=T) > voisin v1 v2 102 "103" "304" 103 "303" "102" 301 "103" "303" 303 "403" "304" 304 "303" "102" 403 "103" "303" So my final result is: 102 103 301 303 304 403 102 NA 0.6 NA NA 0.4 NA 103 0.5 NA NA 0.5 NA NA 301 NA 0.9 NA 0.1 NA NA 303 NA NA NA NA 0.2 0.8 304 0.3 NA NA 0.7 NA NA 403 NA 0.6 NA 0.4 NA NA So, globally I want to fill for each line of "poids2" data from "wei2" associated with the good the good identifier found in "voisin". This can easily be done by a loop: > loop <- poids2 > for(i in 1:6){ + loop[i,voisin[i,]] <- wei2[i,] + } But I expect it to be quite slow with my larger dataset. Does any of you has an idea how I could remove the loop and speed up the operation? Best regards, Bastien Ferland-Raymond, M.Sc. Stat., M.Sc. Biol. Division des orientations et projets spéciaux Direction des inventaires forestiers Ministère des Ressources naturelles et de la Faune du Québec ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.