Ben, 

this is a continuation of the query i posted on: 

http://r.789695.n4.nabble.com/GLM-and-Neg-Binomial-models-td3902173.html

I cannot give you a direct example (big dataset) of what i did aside from
what i have written:
fitpoisson <- glm((RESPONSE) ~ A  + B + 
offset(log(LENGTH)) + offset(log(LENGTH_OBSERVATION)),family="poisson",data=
dataset)  

fitneg <- glm.nb((RESPONSE) ~ A  + B + 
offset(log(LENGTH)) + offset(log(LENGTH_OBSERVATION)),data= dataset) 

> sum(fitted(fitpoisson))
[1] 373
> sum(fitted(fitneg))
[1] 514

Observed data is 373....


Any thoughts?

tomas 

--
View this message in context: 
http://r.789695.n4.nabble.com/over-estimation-Negative-Binomial-models-tp3912692p3915162.html
Sent from the R help mailing list archive at Nabble.com.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to