On Sat, Oct 1, 2011 at 5:28 AM, Casper Ti. Vector <caspervec...@gmail.com> wrote: > Example: > >> f <- function(x) { 1 + 2 * log(1 + 3 * x) + rnorm(1, sd = 0.5) } >> y <- f(x <- c(1 : 10)); y > [1] 4.503841 5.623073 6.336423 6.861151 7.276430 7.620131 7.913338 8.169004 > [9] 8.395662 8.599227 >> nls(x ~ a + b * log(1 + c * x), start = list(a = 1, b = 2, c = 3), trace = >> TRUE) > 37.22954 : 1 2 3 > Error in numericDeriv(form[[3L]], names(ind), env) : > Missing value or an infinity produced when evaluating the model > In addition: Warning message: > In log(1 + c * x) : NaNs produced > > What's wrong here? Am I handling this problem in the wrong way? > Any suggestions are welcome, thanks :) >
Its linear given c so calculate the residual sum of squares using lm (or lm.fit which is faster) given c and optimize over c: set.seed(123) # for reproducibility # test data x <- 1:10 y <- 1 + 2 * log(1 + 3 * x) + rnorm(1, sd = 0.5) # calculate residual sum of squares for best fit given c fitc <- function(c) lm.fit(cbind(1, log(1 + c * x)), y) rssvals <- function(c) sum(resid(fitc(c))^2) out <- optimize(rssvals, c(0.01, 10)) which gives: > setNames(c(coef(fitc(out$minimum)), out$minimum), letters[1:3]) a b c 0.7197666 2.0000007 2.9999899 -- Statistics & Software Consulting GKX Group, GKX Associates Inc. tel: 1-877-GKX-GROUP email: ggrothendieck at gmail.com ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.