Hi Marcos,

The 'adjusted CI' (based on the 'adjusted se estimator' as in section 4.3.3 of Burnham & Anderson 2002) cannot be calculated for 'lmer' model because it does not give df's for the coefficients.

kamil


Dnia 2011-08-30 12:00, r-help-requ...@r-project.org pisze:
Message: 42
Date: Mon, 29 Aug 2011 08:28:22 -0700 (PDT)
From: Marcos Lima<robalinho.l...@googlemail.com>
To:r-help@r-project.org
Subject: [R] MuMIn Problem getting adjusted Confidence intervals
Message-ID:<1314631702645-3776500.p...@n4.nabble.com>
Content-Type: text/plain; charset=UTF-8

Hello R users

I'm using MuMIn but for some reason I'm not getting the adjusted confidence
interval and uncoditional SE whe I use model.avg().

I took into consideration the steps provided by Grueber et al (2011)
Multimodel inference in ecology and evolution: challenges and solutions in
JEB.

I created a global model to see if malaria prevalence (binomial
distribution) is related to any life history traits of 14 different birds
species, while controling for Family and genus in a GLMM:

global.model.Para<-lmer(cbind(Parahaemoproteus,FailPh)~factor(SS)+factor(NT)+NH+W+IT+factor(MS)+(1|Family/Genus),family=binomial,data=malaria)

I than standardize the input variables using the function standardize form
the arm package:

stdz.model.Para<-standardize(global.model.Para,standardize.y=FALSE)

But I get this message:
Warning messages lost:
In is.na(thedata):
is.na() aplied to an object different from list or vector of type "Null"

I then proceed to use the dredge fucntion:
model.set.Para<-dredge(stdz.model.Para)
<...>

top.models.Para<-get.models(model.set.Para,subset=delta<=7)
top.models

But when I do the model average I do not seem to be getting  the variance or
Uncoditional SE and I'm guessing that the Confidence interval are no
conditional either:

model.avg(top.models.Para,method="NA")

<...>

Averaged model parameters:
             Coefficient    SE Lower CI Upper CI
(Intercept)       -4.75 1.410   -7.510  -1.9900
factor(MS)1       -1.54 0.809   -3.120   0.0471
factor(NT)1        2.28 1.310   -0.286   4.8500
factor(SS)1        3.30 0.968    1.400   5.2000
z.IT              -2.79 2.230   -7.160   1.5800
z.NH               2.28 1.660   -0.968   5.5300
z.W               -1.74 1.490   -4.650   1.1800
Confidence intervals are unadjusted

Relative variable importance:
factor(SS) factor(MS)       z.NH       z.IT        z.W factor(NT)
       0.82       0.33       0.32       0.20       0.07       0.01

Does anyone know what I might be doing wrong?

thanks for the help

Marcos

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to