On 3/5/2008 8:21 AM, gerardus vanneste wrote: > Hello > > I've stumbled upon a problem for inversion of a matrix with large values, > and I haven't found a solution yet... I wondered if someone could give a > hand. (It is about automatic optimisation of a calibration process, which > involves the inverse of the information matrix)
If the matrix actually isn't singular, then a rescaling of the parameters should help a lot. I see the diagonal of infomatrix as > diag(infomatrix) [1] 5.930720e-03 3.872339e+02 4.562529e+07 6.281634e+12 9.228140e+17 [6] 1.398687e+23 2.154124e+28 3.345598e+33 so multiplying the parameters by numbers on the order of the square roots of these entries (e.g. 10^c(-1, 1, 4, 6, 9, 12, 14, 17)), and redoing the rest of the calculations on that scale, should work. Duncan Murdoch > > code: > > ********************* >> macht=0.8698965 >> coeff=1.106836*10^(-8) > >> echtecoeff=c(481.46,19919.23,-93.41188,0.5939589,-0.002846272,8.030726e-6 > ,-1.155094e-8,6.357603e-12)/10000000 >> dosis=c(0,29,70,128,201,290,396) > > >> dfdb <- > array(c(1,1,1,1,1,1,1,dosis,dosis^2,dosis^3,dosis^4,dosis^5,dosis^6,dosis^7),dim=c(7,8)) > >> dfdbtrans = aperm(dfdb) >> sigerr=sqrt(coeff*dosis^macht) >> sigmadosis = c(1:7) >> for(i in 1:7){ > sigmadosis[i]=ifelse(sigerr[i]<2.257786084*10^(-4),2.257786084*10^(-4),sigerr[i]) > > } >> omega = diag(sigmadosis) >> infomatrix = dfdbtrans%*%omega%*%dfdb > ********************** > > I need the inverse of this information matrix, and > >> infomatrix_inv = solve(infomatrix, tol = 10^(-43)) > > does not deliver adequate results (matrixproduct of infomatrix_inv and > infomatrix is not 1). Regular use of solve() delivers the error 'system is > computationally singular: reciprocal condition number: 2.949.10^(-41)' > > > So I went over to an eigendecomposition using eigen(): (so that infomatrix = > V D V^(-1) ==> infomatrix^(-1)= V D^(-1) V^(-1) ) > in the hope this would deliver better results.) > > *********************** >> infomatrix_eigen = eigen(infomatrix) >> infomatrix_eigen_D = diag(infomatrix_eigen$values) >> infomatrix_eigen_V = infomatrix_eigen$vectors >> infomatrix_eigen_V_inv = solve(infomatrix_eigen_V) > *********************** > > however, the matrix product of these are not the same as the infomatrix > itself, only in certain parts: > >> infomatrix_eigen_V %*% infomatrix_eigen_D %*% infomatrix_eigen_V_inv >> infomatrix > > > Therefore, I reckon the inverse of eigendecomposition won't be correct > either. > > As far as I understand, the problem is due to the very large range of data, > and therefore results in numerical problems, but I can't come up with a way > to do it otherwise. > > > Would anyone know how I could solve this problem? > > > > (PS, i'm running under linux suse 10.0, latest R version with MASS libraries > (RV package)) > > F. Crop > UGent -- Medical Physics > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.