Hi, I've data from an incomplete fatorial design. One level of a factor doesn't has the levels of the other. When I use lm(), the summary() return NA for that non estimable parameters. Ok, I understant it. But I use contrast::contrast(), gmodels::estimable(), multcomp::glht() and all these fail when model has NA estimates. This is becouse vcov() and coef() has different dimensions. Is possible set lm() to omit NA? Below same toy data and code.
> # toy data > adi <- expand.grid(cult=gl(1,3,la=LETTERS[1]), fert=101) > fat <- expand.grid(cult=gl(2,3,la=LETTERS[2:3]), fert=seq(50,150,50)) > da <- rbind(adi, fat) > da$y <- da$fert+rnorm(nrow(da),0,10) > > # plot > require(lattice) > xyplot(y~fert|cult, da) > > # adjust > m0 <- lm(y~cult*fert, da) > summary(m0) ... Coefficients: (1 not defined because of singularities) Estimate Std. Error t value Pr(>|t|) (Intercept) 7.55401 10.18956 0.741 0.469 cultB -8.04486 13.54672 -0.594 0.561 cultC -3.83644 6.74848 -0.568 0.578 fert 0.87486 0.08265 10.586 1.24e-08 *** cultB:fert 0.13509 0.11688 1.156 0.265 cultC:fert NA NA NA NA ... > require(gmodels) > estimable(m0, cm=c(1,0,0,100,0,0)) Erro em estimable.default(m0, cm = c(1, 0, 0, 100, 0, 0)) : Dimension of structure(c(1, 0, 0, 100, 0, 0), .Dim = c(1L, 6L)): 1x6, not compatible with no of parameters in m0: 5 Thanks. Walmes. ========================================================================== Walmes Marques Zeviani LEG (Laboratório de Estatística e Geoinformação, 25.450418 S, 49.231759 W) Departamento de Estatística - Universidade Federal do Paraná fone: (+55) 41 3361 3573 VoIP: (3361 3600) 1053 1173 e-mail: wal...@ufpr.br twitter: @walmeszeviani homepage: http://www.leg.ufpr.br/~walmes linux user number: 531218 ========================================================================== [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.