?cor Example:
> dd <- data.frame(x1 = rnorm(40), x2 = rnorm(40), x3 = runif(40, 0, 10)) 'data.frame': 40 obs. of 3 variables: $ x1: num -0.5585 1.3831 -1.7862 0.0572 0.2825 ... $ x2: num -0.5247 -0.8636 -0.0749 0.2399 -0.1592 ... $ x3: num 7.698 5.259 0.918 3.251 5.169 ... > cor(dd) x1 x2 x3 x1 1.0000000 -0.23268659 -0.02915700 x2 -0.2326866 1.00000000 -0.07073142 x3 -0.0291570 -0.07073142 1.00000000 It will also run on a matrix of numeric variables. Any factor or character variables in the set of variables shipped to cor() will cause an error; for example, > head(Oats, 3) Grouped Data: yield ~ nitro | Block Block Variety nitro yield 1 I Victory 0.0 111 2 I Victory 0.2 130 3 I Victory 0.4 157 > cor(Oats) Error in cor(Oats) : 'x' must be numeric > cor(Oats[, 3:4]) nitro yield nitro 1.0000000 0.6130266 yield 0.6130266 1.0000000 HTH, Dennis On Thu, Jun 2, 2011 at 8:48 AM, Bill Hyman <billhym...@yahoo.com> wrote: > Dear all, > > I have a problem. I have m variables each of which has n observations. I want > to > calculate pairwise correlation among the m variables and store the values in > a m > x m matrix. It is extremely slow to use nested 'for' loops if m and n are > large. > Is there any efficient alternative to do this? Many thanks for your > suggestions!! > > Bill > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.