Hi all,
First post for me here, but I have been reading on the forum for almost two years now. Thanks to everyone who contributed btw! I have a dataset of 4000 observations of count of a mammal and I am trying to predict abundance from a inflated-zero model as there is quite a bit of zeros in the response variable. I have tried multiple options, but I might do something wrong as every time I look at the fitted values it do not comprise any 0. Here is what I tried so far: " ## - hurdle from the package (lpsc) - ## > hurdle1 = hurdle(formula = mydata_purge2$TOT ~ mydata_purge2$LC80 + mydata_purge2$LC231 + mydata_purge2$DEM, data = food, dist = "negbin", zero.dist = "binomial") > summary(hurdle1) Call: hurdle(formula = mydata_purge2$TOT ~ mydata_purge2$LC80 + mydata_purge2$LC231 + mydata_purge2$DEM, data = food, dist = "negbin", zero.dist = "binomial") Pearson residuals: Min 1Q Median 3Q Max -1.0833 -0.7448 -0.2801 0.4296 6.7242 Count model coefficients (truncated negbin with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 1.7841678 0.0923781 19.314 < 2e-16 *** mydata_purge2$LC80 -2.5929984 0.4184956 -6.196 5.79e-10 *** mydata_purge2$LC231 0.2154269 0.1171259 1.839 0.065875 . mydata_purge2$DEM 0.0007708 0.0002064 3.735 0.000188 *** Log(theta) 0.3742602 0.0390319 9.589 < 2e-16 *** Zero hurdle model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) 0.0602347 0.2302370 0.262 0.793614 mydata_purge2$LC80 -3.0590108 0.8360020 -3.659 0.000253 *** mydata_purge2$LC231 1.7754441 0.3226731 5.502 3.75e-08 *** mydata_purge2$DEM 0.0031943 0.0005307 6.020 1.75e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Theta: count = 1.4539 Number of iterations in BFGS optimization: 12 Log-likelihood: -1.251e+04 on 9 Df ## - zeroinfl from the package (lpsc) - ## > zip1A = zeroinfl(mydata_purge2$TOT ~ mydata_purge2$LC80 + mydata_purge2$LC231 + mydata_purge2$DEM, data = food) > summary(zip1A) Call: zeroinfl(formula = mydata_purge2$TOT ~ mydata_purge2$LC80 + mydata_purge2$LC231 + mydata_purge2$DEM, data = food) Pearson residuals: Min 1Q Median 3Q Max -2.2128 -1.2886 -0.5010 0.7594 11.8458 Count model coefficients (poisson with log link): Estimate Std. Error z value Pr(>|z|) (Intercept) 1.894e+00 3.547e-02 53.401 < 2e-16 *** mydata_purge2$LC80 -2.249e+00 1.768e-01 -12.725 < 2e-16 *** mydata_purge2$LC231 1.799e-01 4.492e-02 4.005 6.21e-05 *** mydata_purge2$DEM 6.670e-04 7.687e-05 8.678 < 2e-16 *** Zero-inflation model coefficients (binomial with logit link): Estimate Std. Error z value Pr(>|z|) (Intercept) -0.0593751 0.2308068 -0.257 0.796986 mydata_purge2$LC80 2.9428092 0.8523669 3.453 0.000555 *** mydata_purge2$LC231 -1.7772101 0.3233166 -5.497 3.87e-08 *** mydata_purge2$DEM -0.0031901 0.0005319 -5.997 2.01e-09 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Number of iterations in BFGS optimization: 13 Log-likelihood: -1.727e+04 on 8 Df > a1 = predict(zip1A) > b1 = mydata_purge2$TOT > plot(a1,b1) " Please find attached the plot of zip1A (which look quite similar to the hurdle1). Your help would be much appreciated, Thanks, JM.
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.