Hi, I am trying to run a simple logistic regression using lrm() to calculate a odds ratio. I found a confusing output when I use summary() on the fit object which gave some OR that is totally different from simply taking exp(coefficient), see below:
> dat<-read.table("dat.txt",sep='\t',header=T,row.names=NULL) > d<-datadist(dat) > options(datadist='d') > library(rms) > (fit<-lrm(response~x,data=dat,x=T,y=T)) Logistic Regression Model lrm(formula = response ~ x, data = dat, x = T, y = T) Model Likelihood Discrimination Rank Discrim. Ratio Test Indexes Indexes Obs 150 LR chi2 17.11 R2 0.191 C 0.763 0 128 d.f. 1 g 1.209 Dxy 0.526 1 22 Pr(> chi2) <0.0001 gr 3.350 gamma 0.528 max |deriv| 1e-11 gp 0.129 tau-a 0.132 Brier 0.111 Coef S.E. Wald Z Pr(>|Z|) Intercept -5.0059 0.9813 -5.10 <0.0001 x 0.5647 0.1525 3.70 0.0002 As you can see, the odds ratio for x is exp(0.5647)=1.75892. But if I run the following using summary(): > summary(fit) Effects Response : response Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95 x 3.9003 6.2314 2.3311 1.32 0.36 0.62 2.01 Odds Ratio 3.9003 6.2314 2.3311 3.73 NA 1.86 7.49 What are these output? none of the numbers is the odds ratio (1.75892) that I calculated by using exp(). Can any explain? Thanks John [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.