Dear all, I would like to implement a spatial quantile regression using instrumental variable estimation (according to Su and Yang (2007), Instrumental variable quantile estimation of spatial autoregressive models, SMU economics & statistis working paper series, 2007, 05-2007, p.35 ).
I am applying the hedonic pricing method on land transactions in Luxembourg. My original data set contains 4335 observations. I'm quite new to R and would like to ask if someone has implemented the method proposed by Su and Yang in R or if anyone could give me a hint on the different codes and steps? Please find attached a small sample of my data and matrix. R codes: library(foreign) library(lmtest) library(spdep) library(quantreg) data<-read.table("DataSample.txt",header=TRUE, sep="") attach(data) matrix<-read.gwt2nb("matrixsample.gwt" ,region.id=no_Trans) matrix.listw<-nb2listw(matrix) OLS model OLS<-lm(lnprice~surface+d2007+LUX+tsect_ci, data=data) summary(OLS) SAR model SAR<-lagsarlm(lnprice~surface+d2007+LUX+tsect_ci, data=data, listw = matrix.listw) summary(SAR) I hope that this information is sufficient and will help you to help me :) Many thanks in advance, Marie-Line Glaesener PhD student Unité de Recherche IPSE (Identités. Politiques, Sociétés, Espaces) Laboratoire de Géographie et Aménagement du Territoire UNIVERSITÉ DU LUXEMBOURG CAMPUS WALFERDANGE Route de Diekirch / BP 2 L-7201 Walferdange Luxembourg www.geo.ipse.uni.lu<http://www.geo.ipse.uni.lu/>
no_trans idsect lnprice surface surfsq dVFA d2006 d2007 LUX 73474 13120402 12.408 594 352836 0 1 0 0 73710 12050503 11.878 576 331776 0 0 1 0 73713 12050505 12.429 383 146689 1 1 0 1 73722 13110202 12.782 1078 1162084 0 0 1 0 73764 12070503 11.849 495 245025 0 1 0 0
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.