Hello R-world, Please, help me to get round my little mess I have a data.frame in which I'd rather like some values to be NA for the future imputation process.
I've come up with the following piece of code: random.del <- function (x, n.keeprows, del.percent){ n.items <- ncol(x) k <- n.items*(del.percent/100) x.del <- x for (i in (n.keeprows+1):nrow(x)){ j <- sample(1:n.items, k) x.del[i,j] <- NA } return (x.del) } The problems is that random.del turns out to be slow on huge samples. Is there any other more effective/charming way to do the same? Thanks, Sergey -- View this message in context: http://r.789695.n4.nabble.com/How-to-erase-replace-certain-elements-in-the-data-frame-tp3470883p3470883.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.