On 22.04.2011 00:36, psycrcyo wrote:
Hi!! I'm having trouble selecting 10 out of 41 attributes of the KDD data set. In order to identify the components with the higher variance I'm using princomp. the result i get for summary(pca1) is:
Actually you calculated the first 10 principal components. You have not selected anything - particularly no "attributes", all "attributes" are included in your 10 first PCs. I'd suggest to read some textbook about PCA.
Some people like to perform stepwise regression of variables on the first PC if it explains a lot of the variance, but that should be done *very* carefully, if at all.
Best, Uwe Ligges
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Standard deviation 9.882181e+05 3.303966e+04 7.083767e+02 3.282215e+02 9.839173e+01 4.642758e+01 2.923245e+01 6.447245e+00 2.689471e+00 1.292525e+00 Proportion of Variance 9.988828e-01 1.116555e-03 5.132601e-07 1.101902e-07 9.902073e-09 2.204758e-09 8.740565e-10 4.251648e-11 7.398482e-12 1.708784e-12 Cumulative Proportion 9.988828e-01 9.999994e-01 9.999999e-01 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 and for the loadings a constant 0.024 for the proportion of variability: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 Proportion Var 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 Cumulative Var 0.024 0.048 0.071 0.095 0.119 0.143 0.167 0.190 0.214 0.238 So the questions are: Which of the two is the right proportion of variance? and, is there a way for R to tell me which attributes they belong to? Any help will be very appreciated. psycrcyo -- View this message in context: http://r.789695.n4.nabble.com/Rearranging-PCA-results-from-R-tp3467015p3467015.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.