Quick question,
 
I tried to find a function in available packages to find NA's for an entire 
data set (or single variables) and report the row of missing values (NA's for 
each column).  I searched the typical routes through the blogs and the help 
manuals for 15 minutes.  Rather than spend any more time searching I created my 
own function to do this (probably in less time than it would have taken me to 
find the function).  
 
Now I still have the same question:  Is this function (NAhunter I call it) 
already in existence?  If so please direct me (because I'm sure they've written 
better code more efficiently).  I highly doubt I'm this first person to want to 
find all the missing values in a data set so I assume there is a function for 
it but I just didn't spend enough time looking.  If there is no existing 
function (big if here), is this something people feel is worthwhile for me to 
put into a package of some sort?  
 
Tyler
 
Here's the code:
 
NAhunter<-function(dataset)
{
find.NA<-function(variable)
{
if(is.numeric(variable)){
n<-length(variable)
mean<-mean(variable, na.rm=T)
median<-median(variable, na.rm=T)
sd<-sd(variable, na.rm=T)
NAs<-is.na(variable)
total.NA<-sum(NAs)
percent.missing<-total.NA/n
descriptives<-data.frame(n,mean,median,sd,total.NA,percent.missing)
rownames(descriptives)<-c(" ")
Case.Number<-1:n
Missing.Values<-ifelse(NAs>0,"Missing Value"," ")
missing.value<-data.frame(Case.Number,Missing.Values)
missing.values<-missing.value[ which(Missing.Values=='Missing Value'),]
list("NUMERIC DATA","DESCRIPTIVES"=t(descriptives),"CASE # OF MISSING 
VALUES"=missing.values[,1])
}
else{
n<-length(variable)
NAs<-is.na(variable)
total.NA<-sum(NAs)
percent.missing<-total.NA/n
descriptives<-data.frame(n,total.NA,percent.missing)
rownames(descriptives)<-c(" ")
Case.Number<-1:n
Missing.Values<-ifelse(NAs>0,"Missing Value"," ")
missing.value<-data.frame(Case.Number,Missing.Values)
missing.values<-missing.value[ which(Missing.Values=='Missing Value'),]
list("CATEGORICAL DATA","DESCRIPTIVES"=t(descriptives),"CASE # OF MISSING 
VALUES"=missing.values[,1])
}
}
dataset<-data.frame(dataset)
options(scipen=100)
options(digits=2)
lapply(dataset,find.NA)
}                                         
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to