G'day Gabor, On Thu, 17 Mar 2011 20:38:21 -0400 Gabor Grothendieck <ggrothendi...@gmail.com> wrote:
> > Or am I missing something? O.k., because the residuals don't add to zero, there may be a non-zero correlation between residuals and fitted values, which messes up the equation at the variance level. > Try it on an example to convince yourself: > > > fm <- lm(demand ~ Time, BOD) > > var(fitted(fm)) + var(resid(fm)) - var(BOD$demand) > [1] 3.552714e-15 > > > > fm0 <- lm(demand ~ Time - 1, BOD) > > var(fitted(fm0)) + var(resid(fm0)) - var(BOD$demand) > [1] 59.28969 But, and this is of course the geometry of least squares: R> sum(fitted(fm)^2) + sum(resid(fm)^2) - sum(BOD$demand^2) [1] 0 R> sum(fitted(fm0)^2) + sum(resid(fm0)^2) - sum(BOD$demand^2) [1] 2.273737e-13 and the reason why the formula changes if there is no (explicit) intercept term in the model. Cheers, Berwin ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.