Hi, I have the following type of data: 86 subjects in three independent groups (high power vs low power vs control). Each subject solves 8 reasoning problems of two kinds: conflict problems and noconflict problems. I measure accuracy in solving the reasoning problems. To summarize: binary response, 1 within subject var (TYPE), 1 between subject var (POWER).
I wanted to fit the following model: for problem i, person j: logodds ( Y_ij ) = b_0j + b_1j TYPE_ij with b_0j = b_00 + b_01 POWER_j + u_0j and b_1j = b_10 + b_11 POWER_j I think it makes sense, but I'm not sure. Here are the observed cell means: conflict noconflict control 0.6896552 0.9568966 high 0.6935484 0.9677419 low 0.8846154 0.9903846 GLMER gives me: summary(glmer(accuracy~f_power*f_type + (1|subject), family=binomial,data=syllogisms)) Generalized linear mixed model fit by the Laplace approximation Formula: accuracy ~ f_power * f_type + (1 | subject) Data: syllogisms AIC BIC logLik deviance 406 437.7 -196 392 Random effects: Groups Name Variance Std.Dev. subject (Intercept) 4.9968 2.2353 Number of obs: 688, groups: subject, 86 Fixed effects: Estimate Std. Error z value Pr(>|z|) (Intercept) 1.50745 0.50507 2.985 0.00284 ** f_powerhp 0.13083 0.70719 0.185 0.85323 f_powerlow 2.04121 0.85308 2.393 0.01672 * f_typenoconflict 3.28715 0.64673 5.083 3.72e-07 *** f_powerhp:f_typenoconflict 0.21680 0.93165 0.233 0.81599 f_powerlow:f_typenoconflict -0.01199 1.45807 -0.008 0.99344 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) f_pwrh f_pwrl f_typn f_pwrh:_ f_powerhp -0.714 f_powerlow -0.592 0.423 f_typncnflc -0.185 0.132 0.109 f_pwrhp:f_t 0.128 -0.170 -0.076 -0.694 f_pwrlw:f_t 0.082 -0.059 -0.144 -0.444 0.308 glmmPQL gives me: summary(glmmPQL(fixed=accuracy~f_power*f_type, random=~1|subject, family=binomial, data=syllogisms)) iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration 6 Linear mixed-effects model fit by maximum likelihood Data: syllogisms AIC BIC logLik NA NA NA Random effects: Formula: ~1 | subject (Intercept) Residual StdDev: 1.817202 0.8045027 Variance function: Structure: fixed weights Formula: ~invwt Fixed effects: accuracy ~ f_power * f_type Value Std.Error DF t-value p-value (Intercept) 1.1403334 0.4064642 599 2.805496 0.0052 f_powerhp 0.0996481 0.5683296 83 0.175335 0.8612 f_powerlow 1.5358270 0.6486150 83 2.367856 0.0202 f_typenoconflict 3.0096016 0.4769761 599 6.309754 0.0000 f_powerhp:f_typenoconflict 0.1856061 0.6790046 599 0.273350 0.7847 f_powerlow:f_typenoconflict 0.0968204 1.0318659 599 0.093830 0.9253 Correlation: (Intr) f_pwrh f_pwrl f_typn f_pwrh:_ f_powerhp -0.715 f_powerlow -0.627 0.448 f_typenoconflict -0.194 0.138 0.121 f_powerhp:f_typenoconflict 0.136 -0.182 -0.085 -0.702 f_powerlow:f_typenoconflict 0.089 -0.064 -0.153 -0.462 0.325 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -12.43735991 0.06243699 0.22966010 0.33106978 2.23942234 Number of Observations: 688 Number of Groups: 86 Strange thing is that when you convert the estimates to probabilities, they are quite far off. For control, no conflict (intercept), the estimation from glmer is 1.5 -> 81% and for glmmPQL is 1.14 -> 75%, whereas the observed is: 68%. Am I doing something wrong? Any help is very much appreciated. Sam. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.