On 01.02.2011 23:07, kparamas wrote:
I have this function and want to run it parallel with different sets of data. Using SNOW and clusterApplyLB.
Nice, but what is your question? PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Uwe Ligges
system.time(out<- mclapply(cData, plotGraph)) #each cData contains 100X6000 doubles system.time(out<- mclapply(cData2, plotGraph)) system.time(out<- mclapply(cData3, plotGraph)) system.time(out<- mclapply(cData4, plotGraph)) system.time(out<- mclapply(cData5, plotGraph)) system.time(out<- mclapply(cData6, plotGraph)) plotGraph()<- function(cData) { cl = unname(cor(cData)) result = cbind(as.vector(row(cl)),as.vector(col(cl)),as.vector(cl)) result = result[result[,1] != result[,2],] corm = result corm =corm[abs(corm[,3])>= CORRELATION, ] # remove low cor pairs library(network); library(sna) net<- network(corm, directed = F) # the network cd<- component.dist(net) # component analysis delete.vertices(net, which(cd$csize[cd$membership] == 1)) # delete genes not connected with others plot(net) }
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.