Dear R Community! We analyse the impact of climbing activity on cliff vegetation. During our fieldwork, we recorded 90 Transects in 3 climbing sites. The aim is to see, if the plant cover (response: Cover) is influenced only by crevice availability (predictor: Cracs), or, additional, by the distance to the climbing route (predictor: Distance). Six plots are nested within one Transect (ID.Transekt), the Transects are nested within the climbing site (Site).
I tried to fit two linear mixed models with lmer(), and to compare them by anova(): > cracks.lmer <- lmer (Cover ~ Cracks + Distance + (Cracks + Distance | > + Site / ID.Transekt) , method = ("ML")) Warning message: In .local(x, ..., value) : Estimated variance-covariance for factors ‘ID.Transekt:Site’, ‘Site’ is singular > cracks.lmer1 <- lmer (Cover ~ Cracks + (Cracks | Site / ID.Transekt) , > + data = Lmm.spalten.corr, method = ("ML")) Warning messages: 1: In .local(x, ..., value) : Estimated variance-covariance for factor ‘Site’ is singular 2: In .local(x, ..., value) : nlminb returned message false convergence (8) For this one, i changed the maxIter and msMaxIter up to 50000000, but the Warning messages remained the same. I have many "0" values for "Cover" and "Cracks" and tried to exclude some of them in different ways (as all transects without vegetation cover), but this did not help. The current version deals with all transects wich have at least two plots with crevices. The correlation Intercept/Cracks ist -1.000 for both models. I attachet a symmary of the used data.frame, a randomly selected subset and the summarys of cracks.lmer and cracks.lmer1 in a *.txt file (modified with kate). Some xyplots are attached as *.png. (The error message on the plots means "Error using packet 5, NA/NaN/Inf in externem Funktionsaufruf", excluding these transects does not change the lmer message.) My question is: Is it possible and does it make sense to fit these date with lmer? I do get outputs, but they dont seem really reliable to me. I hope that this is not a stupid and unnecessary question, but i did't really find a answer in the current mailing-lists. Thanks a lot! Martin Klipp R version 2.6.2 (2008-02-08) i486-pc-linux-gnu Kubuntu 6.06.1, precompieled packages from the CRAN-mirror. lme4_0.99875-9 Matrix_0.999375-4 lattice_0.17-2 nlme_3.1-86
>summary (Lmm.spalten.corr) ID.Transekt Distance Cracks Cover 11 : 6 Min. :1.0 Min. : 0.00 Min. : 0.000 12 : 6 1st Qu.:2.0 1st Qu.: 6.00 1st Qu.: 0.000 14 : 6 Median :3.5 Median : 25.00 Median : 0.100 16 : 6 Mean :3.5 Mean : 31.77 Mean : 1.133 17 : 6 3rd Qu.:5.0 3rd Qu.: 45.00 3rd Qu.: 0.700 18 : 6 Max. :6.0 Max. :244.00 Max. :33.650 (Other):450 Site Brueggele :162 Kirchler :168 Plaetzwiese:156 #Subset of 20 randomly selectet Transects from Lmm.spalten.corr: Grouped Data: Cover ~ Cracks + Distance | Site/ID.Transekt ID.Transekt Distance Cracks Cover Site 1 11 1 25 0.14 Plaetzwiese 2 11 2 30 7.10 Plaetzwiese 3 11 3 53 0.80 Plaetzwiese 4 11 4 25 0.70 Plaetzwiese 5 11 5 25 0.90 Plaetzwiese 6 11 6 28 0.00 Plaetzwiese 19 14 1 10 0.00 Plaetzwiese 20 14 2 10 0.00 Plaetzwiese 21 14 3 0 0.00 Plaetzwiese 22 14 4 10 0.00 Plaetzwiese 23 14 5 0 0.00 Plaetzwiese 24 14 6 0 0.00 Plaetzwiese 31 16 1 25 0.00 Plaetzwiese 32 16 2 20 0.00 Plaetzwiese 33 16 3 38 8.20 Plaetzwiese 34 16 4 45 16.00 Plaetzwiese 35 16 5 60 6.50 Plaetzwiese 36 16 6 0 0.00 Plaetzwiese 49 19 1 45 0.18 Plaetzwiese 50 19 2 17 0.10 Plaetzwiese 51 19 3 7 0.00 Plaetzwiese 52 19 4 8 0.00 Plaetzwiese 53 19 5 0 0.00 Plaetzwiese 54 19 6 5 0.00 Plaetzwiese 67 22 1 44 0.00 Plaetzwiese 68 22 2 25 0.00 Plaetzwiese 69 22 3 0 0.00 Plaetzwiese 70 22 4 0 0.00 Plaetzwiese 71 22 5 14 0.26 Plaetzwiese 72 22 6 0 0.00 Plaetzwiese 85 25 1 65 0.35 Plaetzwiese 86 25 2 43 0.81 Plaetzwiese 87 25 3 31 2.00 Plaetzwiese 88 25 4 0 0.00 Plaetzwiese 89 25 5 0 0.00 Plaetzwiese 90 25 6 6 0.00 Plaetzwiese 109 29 1 0 0.00 Plaetzwiese 110 29 2 0 0.00 Plaetzwiese 111 29 3 105 0.85 Plaetzwiese 112 29 4 20 0.80 Plaetzwiese 113 29 5 5 0.10 Plaetzwiese 114 29 6 0 0.00 Plaetzwiese 199 44 1 72 0.85 Kirchler 200 44 2 20 0.05 Kirchler 201 44 3 3 0.00 Kirchler 202 44 4 0 0.00 Kirchler 203 44 5 9 0.00 Kirchler 204 44 6 0 0.00 Kirchler 205 45 1 35 1.75 Kirchler 206 45 2 35 1.20 Kirchler 207 45 3 19 0.30 Kirchler 208 45 4 48 0.25 Kirchler 209 45 5 30 0.00 Kirchler 210 45 6 17 0.00 Kirchler 223 48 1 48 0.12 Kirchler 224 48 2 5 0.00 Kirchler 225 48 3 10 0.00 Kirchler 226 48 4 43 2.25 Kirchler 227 48 5 39 2.90 Kirchler 228 48 6 46 0.75 Kirchler 235 50 1 24 0.25 Kirchler 236 50 2 93 0.25 Kirchler 237 50 3 0 0.00 Kirchler 238 50 4 7 0.00 Kirchler 239 50 5 0 0.00 Kirchler 240 50 6 7 0.00 Kirchler 295 60 1 55 3.10 Kirchler 296 60 2 27 1.50 Kirchler 297 60 3 50 3.60 Kirchler 298 60 4 75 5.50 Kirchler 299 60 5 65 1.25 Kirchler 300 60 6 0 0.00 Kirchler 307 62 1 75 2.00 Kirchler 308 62 2 20 0.20 Kirchler 309 62 3 10 0.30 Kirchler 310 62 4 0 0.00 Kirchler 311 62 5 10 0.00 Kirchler 312 62 6 50 2.00 Kirchler 319 64 1 109 5.20 Kirchler 320 64 2 48 2.72 Kirchler 321 64 3 67 8.00 Kirchler 322 64 4 23 0.00 Kirchler 323 64 5 0 0.00 Kirchler 324 64 6 0 0.00 Kirchler 331 66 1 76 0.01 Kirchler 332 66 2 83 1.30 Kirchler 333 66 3 24 0.30 Kirchler 334 66 4 100 13.80 Kirchler 335 66 5 25 0.00 Kirchler 336 66 6 0 0.00 Kirchler 349 69 1 103 6.05 Kirchler 350 69 2 63 1.35 Kirchler 351 69 3 20 0.00 Kirchler 352 69 4 15 0.20 Kirchler 353 69 5 0 0.00 Kirchler 354 69 6 15 0.00 Kirchler 367 72 1 244 0.15 Brueggele 368 72 2 180 1.55 Brueggele 369 72 3 165 11.95 Brueggele 370 72 4 137 5.90 Brueggele 371 72 5 145 7.20 Brueggele 372 72 6 93 4.30 Brueggele 397 77 1 6 0.02 Brueggele 398 77 2 7 0.00 Brueggele 399 77 3 25 0.00 Brueggele 400 77 4 60 0.20 Brueggele 401 77 5 59 0.70 Brueggele 402 77 6 42 0.05 Brueggele 433 83 1 55 1.10 Brueggele 434 83 2 45 1.00 Brueggele 435 83 3 0 0.00 Brueggele 436 83 4 25 0.00 Brueggele 437 83 5 15 0.10 Brueggele 438 83 6 5 0.00 Brueggele >cracks.lmer <- (lmer (Cover ~ Cracks + Distance + (Cracks + Distance | Site / >ID.Transekt) , data = Lmm.spalten.corr, method = ("ML")) >summary (cracks.lmer) Linear mixed-effects model fit by maximum likelihood Formula: Cover ~ Cracks + Distance + (Cracks + Distance | Site/ID.Transekt) Data: Lmm.spalten.corr AIC BIC logLik MLdeviance REMLdeviance 1918 1981 -944 1888 1904 Random effects: Groups Name Variance Std.Dev. Corr ID.Transekt:Site (Intercept) 1.8358e-01 4.2846e-01 Cracks 2.1744e-03 4.6631e-02 -1.000 Distance 1.0280e-09 3.2062e-05 0.002 -0.002 Site (Intercept) 1.0328e-09 3.2137e-05 Cracks 1.0435e-09 3.2303e-05 0.044 Distance 1.0280e-09 3.2062e-05 0.057 0.122 Residual 2.0560e+00 1.4339e+00 number of obs: 486, groups: ID.Transekt:Site, 81; Site, 3 Fixed effects: Estimate Std. Error t value (Intercept) -0.585846 0.194017 -3.020 Cracks 0.040834 0.006053 6.746 Distance 0.099521 0.041494 2.398 Correlation of Fixed Effects: (Intr) Cracks Cracks -0.455 Distance -0.821 0.080 >cracks.lmer1 <- (lmer (Cover ~ Cracks + Distance + (Cracks + Distance | Site / >ID.Transekt) , data = Lmm.spalten.corr, method = ("ML")) >summary (cracks.lmer1) Linear mixed-effects model fit by maximum likelihood Formula: Cover ~ Cracks + (Cracks | Site/ID.Transekt) Data: Lmm.spalten.corr AIC BIC logLik MLdeviance REMLdeviance 1910 1943 -946.9 1894 1905 Random effects: Groups Name Variance Std.Dev. Corr ID.Transekt:Site (Intercept) 1.9162e-01 4.3774e-01 Cracks 2.1710e-03 4.6594e-02 -1.000 Site (Intercept) 1.1199e-09 3.3465e-05 Cracks 1.0434e-09 3.2302e-05 0.261 Residual 2.0869e+00 1.4446e+00 number of obs: 486, groups: ID.Transekt:Site, 81; Site, 3 Fixed effects: Estimate Std. Error t value (Intercept) -0.203951 0.111849 -1.823 Cracks 0.039669 0.006037 6.571 Correlation of Fixed Effects: (Intr) Cracks -0.688
<<inline: cracks.png>>
<<inline: cracks_distance.png>>
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.