Hello,
I will be very obliged if someone can help me with this statistical R problem: I am trying to do a Pearson correlation on my datasets X, Y with randomization test. My X and Y datasets are pairs. 1. I want to randomize (rearrange) only my X dataset per row ,while keeping the my Y dataset as it is. 2. Then Calculate the correlation for this pair, and compare it to your true value of correlation. 3. Repeat 2 and 3 maybe a 100 times 4. If your true p-value is greater than 95% of the random values, then you can reject the null hypothesis at p<0.05. I am stuck at the randomization step. I need some help in implementing it the appropriate randomization step in my correlation. Below is my incomplete code. I will be very obliged if someone could help: X <- read.table("X.txt",as.is=T,header=T,row.names=1) Y <- read.table("Y.txt",as.is=T,header=T,row.names=1) X.mat<- as.matrix(X) Y.mat<- as.matrix(Y) Corrs<- cor.test(X.mat[1,],Y.mat[1,],alternative =c("greater"),method= c("pearson")) Corrs.rand <- list() for (i in 1:length(X.mat)){ for (j in 1:100){ # This doesnot seem to wrok correctly. How do I run sample function 100 times for the same row? SNP.rand<- sample(SNP.mat[i,],56, replace = FALSE, prob = NULL) Corrs.rand[[j]]<- cor.test(SNP.rand,CNV.mat[j,],alternative =c("greater"),method= c("pearson")) # need to calculate how many times my pvalue from true p-value> random pvalue } } X dataset: #Probes X10851 X12144 X12155 X11882 X10860 X12762 X12239 X12154 1 1 1 0 0 1 0 2 0 2 0 0 0 0 0 0 0 0 3 2 2 2 2 1 2 1 2 4 0 0 0 0 0 0 0 0 5 2 2 2 2 2 2 2 2 6 0 1 0 0 1 1 1 1 7 2 2 NaN 2 2 2 2 2 8 2 2 2 2 2 2 2 2 9 0 1 0 1 1 NaN 1 2 10 2 2 2 2 2 2 2 2 11 2 0 0 0 0 0 0 0 12 0 1 0 1 1 0 1 1 Y dataset: Probes X10851 X12144 X12155 X11882 X10860 X12762 X12239 X12154 1 793.0831 788.1814 867.8504 729.8321 816.852 805.2114 774.599 854.6384 2 12.8695 4.312894 10.69769 5.872213 13.793 9.394133 6.297553 9.307943 3 699.7792 826.9974 795.641 770.9376 806.1241 782.397 817.1075 859.7155 4 892.8217 869.0481 806.3387 812.0431 873.5565 794.4752 813.9587 814.8681 5 892.8217 869.0481 806.3387 812.0431 873.5565 794.4752 813.9587 814.8681 6 839.735 943.4456 950.7575 859.0208 894.246 853.5241 941.4842 913.0246 7 653.1272 751.5218 750.1758 737.3821 757.8486 758.2407 724.2186 770.8669 8 12.8695 4.312894 10.69769 5.872213 13.793 9.394133 6.297553 9.307943 9 839.735 943.4456 950.7575 859.0208 894.246 853.5241 941.4842 913.0246 10 653.1272 751.5218 750.1758 737.3821 757.8486 758.2407 724.2186 770.8669 11 653.1272 751.5218 750.1758 737.3821 757.8486 758.2407 724.2186 770.8669 12 839.735 943.4456 950.7575 859.0208 894.246 853.5241 941.4842 913.0246 Thanks in advance Manisha Mount Sinai School of Medicine Icahn Medical Institute, 1425 Madison Avenue, Box 1498 NY-10029, NEW-YORK, USA [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.