Nikos: > > I finally ran mrpp tests. I think all is fine but one very important > > issue: I > > have no idea how to export/save an "mrpp" object. Tried anything I > > know and > > searched the archives but found nothing.
David W: > And what happened when you tried what seems like the obvious: > save(mrpp_obj, file=) > # rm(list=ls() ) # Only uncomment if you are ready for your workspace > to clear > load("mrpp_store.Rdata") Right, "clearing" did the trick. > > Any ideas? Is really copy-pasting the mrpp results the only way? > > Many of us have no idea what such an object is, since you have not > described the packages and functions used to create it. If you want an > ASCII version then dput or dump are also available. Multiresponse Permuation Procedures (MRPP) is implemented in the "vegan" package. The function mrpp() returns (an object of class "mrpp") something like: --%<--- # check class class ( samples_bitemporal_modis.0001.mrpp ) [1] "mrpp" # check structure str ( samples_bitemporal_modis.0001.mrpp ) List of 12 $ call : language mrpp(dat = samples_bitemporal_modis.0001[, 1:5], grouping = samples_bitemporal_modis.0001[["Class"]]) $ delta : num 0.126 $ E.delta : num 0.202 $ CS : logi NA $ n : Named int [1:5] 335 307 183 188 27 ..- attr(*, "names")= chr [1:5] "Urban" "Vegetation" "Bare ground" "Burned" ... $ classdelta : Named num [1:5] 0.1255 0.1045 0.1837 0.0981 0.1743 ..- attr(*, "names")= chr [1:5] "Urban" "Vegetation" "Bare ground" "Burned" ... $ Pvalue : num 0.001 $ A : num 0.378 $ distance : chr "euclidean" $ weight.type : num 1 $ boot.deltas : num [1:999] 0.202 0.202 0.202 0.203 0.202 ... $ permutations: num 999 - attr(*, "class")= chr "mrpp" -->%--- Now I've tried the following: --%<--- # 1. save(d) it save ( samples_bitemporal_modis.0001.mrpp , file="exported.mrpp.R" ) # 2. loade(d) it in a new object... loadedmrpp <- load ( "exported.mrpp.R") # 3. (tried) to check it... str ( "exported.mrpp.R") chr "samples_bitemporal_modis.0001.mrpp" # it did not cross my mind immediately to... get(loadedmrpp) Call: mrpp(dat = samples_bitemporal_modis.0001[, 1:5], grouping = samples_bitemporal_modis.0001[["Class"]]) Dissimilarity index: euclidean Weights for groups: n Class means and counts: Urban Vegetation Bare ground Burned Water delta 0.1255 0.1045 0.1837 0.0981 0.1743 n 335 307 183 188 27 Chance corrected within-group agreement A: 0.3778 Based on observed delta 0.1258 and expected delta 0.2022 Significance of delta: 0.001 Based on 999 permutations # ...or to work on a clean workspace! -->%--- Thank you David. Cheers, Nikos ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.