Hi all, I am trying to develop a neural network(Multilayer perceptron) with the package 'NEURALNET'. I have some doubts on it, 1. Whether this procedure taken care about categorical input variables- The reason is I could not find any option to describe type of variable in the arguments?
2.The algorithm is providing input variables generalized weights like this, > head(nn$generalized.weights[[1]]) [,1] [,2] [,3] [,4] 1 0.0088556 -0.1330079 0.1657087 0.2537842 2 0.1492874 -2.2422321 2.7934978 4.2782645 3 0.0004489 -0.0067430 0.0084008 0.0128660 4 0.0083028 -0.1247051 0.1553646 0.2379421 5 0.1071413 -1.6092161 2.0048511 3.0704457 6 0.1360035 -2.0427123 2.5449249 3.8975730 3.From this how can I interpret each input variable's relative importance (Variable Importance)?-If yes please provide me the algorithm.. 4. Is there any other neural network package providing the variable Importance directly? -- View this message in context: http://r.789695.n4.nabble.com/Help-on-neural-network-tp3090986p3090986.html Sent from the R help mailing list archive at Nabble.com. [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.