Dear Sir or Madam:

 

I am a doctor of urology,and I am engaged in developing a nomogram of bladder 
cancer. May I ask for your help on below issue?

 

I set up a dataset which include 317 cases. I got the Binary Logistic 
Regression model by SPSS.And then I try to reconstruct the model

(lrm(RECU~Complication+T.Num+T.Grade+Year+TS)) by R-Project,and try to internal 
validate the model through using the function “validate( )”,and get the ROC 
through the function “plot.roc( )”.The outcomes like this: At last I want to 
get the Logistic model ,and get the prediction accuracy .Now the “Area under 
the curve”(0.6931) is not too bad,but the “Dxy”(I think it as the prediction 
accuracy probability) is too low.And I don’t know which reason lead to the 
outcomes.Maybe I have a mistake understanding on the function “lrm( )”,and 
apply it wrong.

 

 Could you please give me some idea on how to resulve this problem? Thanks in 
advance for your kind support.

 

warmly regards,

 

 Ding                                                                           
                                                                                
                                                                                
                                                               

---------------------------------------outcomes----------------------------------------------------------------------------

Logistic Regression Model

lrm(formula = RECU ~ Complications + T.Num + T.Grade + Year + TS, x = TRUE, y = 
TRUE)

 

               Model Likelihood                    Discrimination               
      Rank Discrim.   

                 Ratio Test                                    Indexes          
                          Indexes      

 

Obs    317   LR chi2     37.78                 R2   0.154                       
  C      0.693   

 0     201   d.f.         5                               g    0.876            
               Dxy    0.386   

 1     116   Pr(> chi2)   <0.0001              gr    2.400                      
     gamma  0.408   

max |deriv| 2e-09                                   gp   0.183                  
         tau-a  0.180   

                                                                      Brier 
0.207                    

 

 

                                           Coef              S.E.             
Wald Z            Pr(>|Z|)

Intercept                           -2.3566         0.3819       -6.17          
      <0.0001

Complications                 1.6807         0.6005        2.80                
0.0051 

T.Num                                0.6481         0.2503         2.59         
      0.0096 

T.Grade                            0.4276           0.1820        2.35          
       0.0188 

Year                                   0.5759            0.2849       2.02      
         0.0432 

TS                                        0.6313          0.2750      2.30      
              0.0217 

 

> validate(f,B=200)

         index.orig   training   test     optimism index.corrected   n

Dxy       0.3861     0.4081    0.3699  0.0382     0.3479        200

R2        0.1537     0.1716    0.1378  0.0339     0.1198        200

Intercept  0.0000      0.0000    -0.0585 0.0585     -0.0585        200

Slope     1.0000      1.0000    0.8835  0.1165     0.8835        200

Emax     0.0000      0.0000    0.0375  0.0375     0.0375        200

D        0.1160      0.1315    0.1030  0.0285     0.0875        200

U        -0.0063     -0.0063    0.0021  -0.0084    0.0021        200

Q        0.1223      0.1378    0.1010  0.0369     0.0855        200

B        0.2073      0.2035    0.2114  -0.0079     0.2153        200

g        0.8755      0.9415    0.8170   0.1244     0.7511        200

gp       0.1833      0.1920    0.1728   0.0192     0.1641        200

 

 

> plot.roc(RECU,l)

 

Call:

plot.roc.default(x = RECU, predictor = l)

 

Data: l in 201 controls (response 0) < 116 cases (response 1).

Area under the curve: 0.6931
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to