Hi R-experts. I am working in a R-code where I have two datasets with x and y coordinates on each dataset. I intent to identify the shortest distance between this two datasets. I wrote a short code to do that. But when I join the datasets to compute the distances, the merge function run so slowly. I need only to identify the index of rows from each dataset related to the shortest distance.
x0<-rnorm(n=500,mean=1,sd=runif(1)) y0<-rnorm(n=500,mean=3,sd=runif(1)) x1<-rnorm(n=700,mean=8,sd=runif(1)) y1<-rnorm(n=700,mean=5,sd=runif(1)) df.0<-cbind(x0,y0) df.1<-cbind(x1,y1) plot(df.0,xlim=range(c(x0,x1)),ylim=range(c(y0,y1))) points(df.1,col=2) rm(x0,x1,y0,y1) #merge two data.frames of points #### IT SPEND many time df.merge<-merge(df.0,df.1,all=T) #compute distances between each pair of points attach(df.merge) df.merge$distance<-((x0-x1)^2+(y0-y1)^2)^0.5 detach(df.merge) #identify the minimum distance df.merge.distance.min<-min(df.merge$distance) #select the pair of points (x0,y0,x1,y1) with shortest distance df.merge.distance.min.subset<-subset(df.merge,df.merge$distance<=df.merge.distance.min) #trace a arrow between the points with shortest distance arrows(df.merge.distance.min.subset[1,1],df.merge.distance.min.subset[1,2],df.merge.distance.min.subset[1,3],df.merge.distance.min.subset[1,4],code=0,col=3,lwd=2,lty=1) Any help are welcome Miltinho Brazil. para armazenamento! [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.