Hi. I am trying to construct a svmLinear model using the "caret" package (see code below). Using the same data, without changing any setting, sometimes it constructs the model successfully, and sometimes I get an index out of bounds error. Is this unexpected behaviour? I would appreciate any insights this issue.
Thanks. ~Kendric > train.y [1] S S S S R R R R R R R R R R R R R R R R R R R R Levels: R S > train.x m1 m2 1 0.1756 0.6502 2 0.1110 -0.2217 3 0.0837 -0.1809 4 -0.3703 -0.2476 5 8.3825 2.8814 6 5.6400 12.9922 7 7.5537 7.4809 8 3.5005 5.7844 9 16.8541 16.6326 10 9.1851 8.7814 11 1.4405 11.0132 12 9.8795 2.6182 13 8.7151 4.5476 14 -0.2092 -0.7601 15 3.6876 2.5772 16 8.3776 5.0882 17 8.6567 7.2640 18 20.9386 20.1107 19 12.2903 4.7864 20 10.5920 7.5204 21 10.2679 9.5493 22 6.2023 11.2333 23 -5.0720 -4.8701 24 6.6417 11.5139 > svmLinearGrid <- expand.grid(.C=0.1) > svmLinearFit <- train(train.x, train.y, method="svmLinear", tuneGrid=svmLinearGrid) Fitting: C=0.1 Error in indexes[[j]] : subscript out of bounds > svmLinearFit <- train(train.x, train.y, method="svmLinear", tuneGrid=svmLinearGrid) Fitting: C=0.1 maximum number of iterations reached 0.0005031579 0.0005026807maximum number of iterations reached 0.0002505857 0.0002506714Error in indexes[[j]] : subscript out of bounds > svmLinearFit <- train(train.x, train.y, method="svmLinear", tuneGrid=svmLinearGrid) Fitting: C=0.1 maximum number of iterations reached 0.0003270061 0.0003269764maximum number of iterations reached 7.887867e-05 7.866367e-05maximum number of iterations reached 0.0004087571 0.0004087466Aggregating results Selecting tuning parameters Fitting model on full training set R version 2.11.1 (2010-05-31) x86_64-redhat-linux-gnu locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] splines stats graphics grDevices utils datasets methods [8] base other attached packages: [1] kernlab_0.9-12 pamr_1.47 survival_2.35-8 cluster_1.12.3 [5] e1071_1.5-24 class_7.3-2 caret_4.70 reshape_0.8.3 [9] plyr_1.2.1 lattice_0.18-8 loaded via a namespace (and not attached): [1] grid_2.11.1 -- MSc. Candidate CIHR/MSFHR Training Program in Bioinformatics University of British Columbia [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.