What does missInfo compute and how is it computed? There is only 1 observation missing the ethnic3 variable. There is no other missing data. N=1409
> summary(MIcombine(mod1)) Multiple imputation results: with(rt.imp, glm(G1 ~ stdage + female + as.factor(ethnic3) + u, family = binomial())) MIcombine.default(mod1) results se (lower upper) missInfo (Intercept) -0.40895453 0.14743928 -0.70805544 -0.1098536 53 % stdage 0.13991360 0.06046537 0.02140364 0.2584236 0 % female -0.05587635 0.11083362 -0.27310639 0.1613537 0 % as.factor(ethnic3)1 0.17297835 0.19556664 -0.21032531 0.5562820 0 % as.factor(ethnic3)2 0.63507020 0.18017975 0.28192410 0.9882163 0 % u -0.01322976 0.18896230 -0.40291914 0.3764596 64 % Thanks, Robin Jeffries MS, DrPH Candidate Department of Biostatistics UCLA 530-624-0428 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.