Dear R users Topic: Linear effect model fitting using the nlme package (recomended by Pinheiro et al. 2008 for unbalanced data set).
The R help provides much info about the controversy to use the anova(lme.model) function to present numerator df and F values. Additionally different p-values calculated by lme and anova are reported. However, I come across the same problem, and I would very much appreciate some R help to fit an anova function to get similar p-values compared to the lme function and additionally to provide corresponding F-values. I tried to use contrasts and to deal with the ‚unbalanced data set’. Thanks Sibylle > Kaltenborn<-read.table("Kaltenborn_YEARS.txt", na.strings="*", header=TRUE) > > > library(nlme) > model5c<-lme(asin(sqrt(PropMortality))~Diversity+ > Management+Species+Height+Height*Diversity, data=Kaltenborn, > random=~1|Plot/SubPlot, na.action=na.omit, weights=varPower(form=~Diversity), > subset=Kaltenborn$ADDspecies!=1, method="ML") > summary(model5c) Linear mixed-effects model fit by maximum likelihood Data: Kaltenborn Subset: Kaltenborn$ADDspecies != 1 AIC BIC logLik -249.3509 -205.4723 137.6755 Random effects: Formula: ~1 | Plot (Intercept) StdDev: 0.06162279 Formula: ~1 | SubPlot %in% Plot (Intercept) Residual StdDev: 0.03942785 0.05946185 Variance function: Structure: Power of variance covariate Formula: ~Diversity Parameter estimates: power 0.7302087 Fixed effects: asin(sqrt(PropMortality)) ~ Diversity + Management + Species + Height + Height * Diversity Value Std.Error DF t-value p-value (Intercept) 0.5422893 0.05923691 163 9.154585 0.0000 Diversity -0.0734688 0.02333159 14 -3.148896 0.0071 Managementm+ 0.0217734 0.02283375 30 0.953562 0.3479 Managementu -0.0557160 0.02286694 30 -2.436532 0.0210 SpeciesPab -0.2058763 0.02763737 163 -7.449198 0.0000 SpeciesPm 0.0308005 0.02827782 163 1.089210 0.2777 SpeciesQp 0.0968051 0.02689327 163 3.599602 0.0004 Height -0.0017579 0.00031667 163 -5.551251 0.0000 Diversity:Height 0.0005122 0.00014443 163 3.546270 0.0005 Correlation: (Intr) Dvrsty Mngmn+ Mngmnt SpcsPb SpcsPm SpcsQp Height Diversity -0.867 Managementm+ -0.173 -0.019 Managementu -0.206 0.005 0.499 SpeciesPab -0.253 0.085 0.000 0.035 SpeciesPm -0.239 0.058 0.001 0.064 0.521 SpeciesQp -0.250 0.041 -0.001 0.032 0.502 0.506 Height -0.518 0.532 -0.037 -0.004 0.038 0.004 0.033 Diversity:Height 0.492 -0.581 0.031 -0.008 -0.149 -0.099 -0.069 -0.904 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -2.99290873 -0.60522612 -0.05756772 0.62163049 2.80811502 Number of Observations: 216 Number of Groups: Plot SubPlot %in% Plot 16 48 > anova(model5c) numDF denDF F-value p-value (Intercept) 1 163 244.67887 <.0001 Diversity 1 14 1.53025 0.2364 Management 2 30 6.01972 0.0063 Species 3 163 51.86699 <.0001 Height 1 163 30.08090 <.0001 Diversity:Height 1 163 12.57603 0.0005 > -- ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.