Dear Masters, I'm driving crazy with the lowess() function....
my intent is smoothing confidence intervals for predicted y values in a linear model lm() setting since in the predict() function there exists an option for predicting NA values, I instead encounter problems when I fit a missing values x variable to the predicted terms.....,impossible task!!! I've been banging on my head all morning, I can't find a solution.... also using a loess() I can't get the function to keep the x missing values with the result that it automaticaly drop 'em, so that the smoothing looks like a mess in the plot .... I attach my scripts, a function that would automatize the process explained above #d = a data.frame with some Na #c1,c2 =column indexes regr.plot<-function(d,c1,c2, method=c("spearman","pearson"),titolo,xtag,ytag,livello){ test<-cor.test(d[,c2],d[,c1],method="spearman") pval<-round(test$p.val,4) corr<-round(test$estimate,4) I<-predict(lm(d[,c1]~d[,c2]),newdata=d,interval="confidence",level=livello) plot(d[,c2],d[,c1],xlab=as.character(xtag),ylab=as.character(ytag)) title(as.character(titolo),font=3) abline(lm(d[,c1]~d[,c2]),lwd=2,col="red") #lines(loess(I[,2]~d[,c2])#,data=d,control =loess.control(surface = "direct") #,na.action=na.omit(d[,c2]) #,lty=2,lwd=2,col="blue") #lines(loess(I[,3]~d[,c2])#,data=d,control =loess.control(surface = "direct") #,na.action=na.omit(d[,c2]) #,lty=2,lwd=2,col="blue") lines(lowess(d[,c2],I[,2]),lty=2,lwd=2,col="blue") lines(lowess(d[,c2],I[,3]),lty=2,lwd=2,col="blue") text(locator(1),as.expression(substitute(r==corr),list(corr=corr)), cex=1.5,font=3) if(pval==0){ text(locator(1),expression("p<0.001"), cex=1.5,font=3) }else{ text(locator(1),as.expression(substitute(p==pval),list(pval=pval)), cex=1.5,font=3) } } #THANK U 4 THE EVENTUAL ADVISE.....!! Federico, Student of Statistics at Milano-Bicocca [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.