Um... if that makes sense for the analysis that you're trying to do then that's great. I had assumed that you were using the term "integral" in its usual sense, ie. area under the curve.
Michael On 7 October 2010 18:52, alaios <ala...@yahoo.com> wrote: > > No, because I thought something that might be easier. > If you see the image again you might notice that the proportions I am > looking for might also be found by using the hypotenuse which is the same > (as all squares are triangles) by finding the adjacent. The adjacent are > easier to be found by tracking when the x value changes. > > This happens when the x value increments by one and when y also increments > by one. As I know the line equation y=a*x+b it is very easy all these > points. > Then it is straightforward to find the proportion of these vectors? > > Best Regards > Alex > -- > View this message in context: > http://r.789695.n4.nabble.com/Linear-Integration-tp2956145p2966318.html > Sent from the R help mailing list archive at Nabble.com. > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.