Hi - In an effort to learn some basic arima modeling in R i went through the tutorial found at http://www.stat.pitt.edu/stoffer/tsa2/R_time_series_quick_fix.htm
One of the examples gave me a log likelihood of 77. Now I am simply wondering if this is the expected behavior? Looking in my text book this should not be possible. I have actually spent some time on this but neither the documentation ?arima or google gave me a satisfying answer. Data and code: gTemp.raw = c(-0.11, -0.13, -0.01, -0.04, -0.42, -0.23, -0.25, -0.45, -0.23, 0.04, -0.22, -0.55 , -0.40, -0.39, -0.32, -0.32, -0.27, -0.15, -0.21, -0.25, -0.05, -0.05, -0.30, -0.35 , -0.42, -0.25, -0.15, -0.41, -0.30, -0.31, -0.21, -0.25, -0.33, -0.28, -0.02, 0.06 , -0.20, -0.46, -0.33, -0.09, -0.15, -0.04, -0.09, -0.16, -0.11, -0.15, 0.04, -0.05 , 0.01, -0.22, -0.03, 0.03, 0.04, -0.11, 0.05, -0.08, 0.01, 0.12, 0.15, -0.02 , 0.14, 0.11, 0.10, 0.06, 0.10, -0.01, 0.01, 0.12, -0.03, -0.09, -0.17, -0.02 , 0.03, 0.12, -0.09, -0.09, -0.18, 0.08, 0.10, 0.05, -0.02, 0.10, 0.05, 0.03 , -0.25, -0.15, -0.07, -0.02, -0.09, 0.00, 0.04, -0.10, -0.05, 0.18, -0.06, -0.02 , -0.21, 0.16, 0.07, 0.13, 0.27, 0.40, 0.10, 0.34, 0.16, 0.13, 0.19, 0.35 , 0.42, 0.28, 0.49, 0.44, 0.16, 0.18, 0.31, 0.47, 0.36, 0.40, 0.71, 0.43 , 0.41, 0.56, 0.70, 0.66, 0.60) gTemp.ts = ts(gTemp.raw, start=1880, freq=1) gTemp.model = arima(diff(gTemp.ts), order=c(1,0,1)) Results: > gTemp.model Call: arima(x = diff(gTemp.ts), order = c(1, 0, 1)) Coefficients: ar1 ma1 intercept 0.2695 -0.8180 0.0061 s.e. 0.1122 0.0624 0.0030 sigma^2 estimated as 0.01680: log likelihood = 77.05, aic = -146.11 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.