Suppose I have the following data: tmp <- data.frame(var1 = sample(c(0:10), 3, replace = TRUE), var2 = sample(c(0:10), 3, replace = TRUE), var3 = sample(c(0:10), 3, replace = TRUE))
I can run the following double loop and yield what I want in the end (rr1) as: library(statmod) Q <- 2 b <- runif(3) qq <- gauss.quad.prob(Q, dist = 'normal', mu = 0, sigma=1) rr1 <- matrix(0, nrow = Q, ncol = nrow(tmp)) L <- nrow(tmp) for(j in 1:Q){ for(i in 1:L){ rr1[j,i] <- exp(sum(log((exp(tmp[i,]*(qq$nodes[j]-b))) / (factorial(tmp[i,]) * exp(exp(qq$nodes[j]-b)))))) * ((1/(s*sqrt(2*pi))) * exp(-((qq$nodes[j]-0)^2/(2*s^2))))/dnorm(qq$nodes[j]) * qq$weights[j] } } rr1 But, I think this is so inefficient for large Q and nrow(tmp). The function I am looping over is: fn <- function(x, nodes, weights, s, b) { exp(sum(log((exp(x*(nodes-b))) / (factorial(x) * exp(exp(nodes-b)))))) * ((1/(s*sqrt(2*pi))) * exp(-((nodes-0)^2/(2*s^2))))/dnorm(nodes) * weights } I've tried using apply in a few ways, but I can't replicate rr1 from the double loop. I can go through each value of Q one step at a time and get matching values in the rr1 table, but this would still require a loop and that I think can be avoided. apply(tmp, 1, fn, nodes = qq$nodes[1], weights = qq$weights[1], s = 1, b = b) Does anyone see an efficient way to compute rr1 without a loop? Harold > sessionInfo() R version 2.10.1 (2009-12-14) i386-pc-mingw32 locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 [4] LC_NUMERIC=C LC_TIME=English_United States.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] minqa_1.1.9 Rcpp_0.8.6 MiscPsycho_1.6 statmod_1.4.6 lattice_0.17-26 gdata_2.8.0 loaded via a namespace (and not attached): [1] grid_2.10.1 gtools_2.6.2 tools_2.10.1 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.