-----BEGIN PGP SIGNED MESSAGE----- Hash: SHA1
## from ?glm counts <- c(18,17,15,20,10,20,25,13,12) outcome <- gl(3,1,9) treatment <- gl(3,3) d.AD <- data.frame(treatment, outcome, counts) glm.D93 <- glm(counts ~ outcome + treatment, family=poisson, data=d.AD) ## predict on 'link' or 'linear predictor' scale, with SEs pp <- predict(glm.D93,se.fit=TRUE) etaframe <- with(pp,cbind(fit,lower=fit-1.96*se.fit,upper=fit+1.96*se.fit)) pframe <- exp(etaframe) ## inverse-link ## picture pframe <- as.data.frame(cbind(obs=d.AD$counts,pframe)) library(plotrix) plot(pframe$obs,ylim=c(5,30)) with(pframe,plotCI(1:9,fit,li=lower,ui=upper,col=2,add=TRUE)) If you're using a binomial model you need 'plogis' rather than 'exp' as your inverse link, and you may need to multiply by the binomial N as appropriate. On 10-09-29 06:07 AM, Sam wrote: > I am looking to do the same but am a bit confused > >> and apply the inverse link function for your model. > > i understand up to this point and i understand what this means, > however i am unsure why it needs to be done and how you do it - i.e > i use family="binomial" is this wrong if i use this method to > calculate 95% CI? > > Thanks > > Sam On 28 Sep 2010, at 14:50, Ben Bolker wrote: > > zozio32 <remy.pascal <at> gmail.com> writes: > >> >> >> Hi >> >> I had to use a glm instead of my basic lm on some data due to >> unconstant variance. >> >> now, when I plot the model over the data, how can I easily get >> the 95% confidence interval that sormally coming from: >> >>> yv <- predict(modelVar,list(aveLength=xv),int="c") >>> matlines(xv,yv,lty=c(1,2,2)) >> >> There is no "interval" argument to pass to the predict function >> when using a glm, so I was wondering if I had to use an other >> function >> > > You need to use predict with se=TRUE; construct the confidence > intervals by computing predicted values +- 1.96 times the standard > error returned; and apply the inverse link function for your > model. > > If heteroscedasticity is your main problem, and not a specific > (known) non-normal distribution, you might consider using the gls > function from the nlme package with an appropriate 'weights' > argument. > > ______________________________________________ R-help@r-project.org > mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do > read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > -----BEGIN PGP SIGNATURE----- Version: GnuPG v1.4.10 (GNU/Linux) Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org/ iEYEARECAAYFAkyjNKQACgkQc5UpGjwzenNW9gCgjfXin/9dI2y0rnk9wZWu97P8 TVgAn3WsG2ATva5WpLZXS1PXUTMRTTMi =gvAc -----END PGP SIGNATURE----- ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.