Dear List, I am familier with binary models, however i am now trying to get predictions from a ordinal model and have a question.
I have a data set made up of 12 categorical predictors, the response variable is classed as 1,2,3,4,5,6, this relates to threat level of the species ( on the IUCN rating). Previously i have combined levels 1 and 2 to form = non threatened and then combined 3-6 to form threatened, and run a binary model. I have tested the performance of this based on the brier score (0.198) and the AUC or C value (0.75). I also partitioned the data set into training and test data and used the predict function to get a predicted probability for the newdata. When visualising the results with a cutoff value calculated with epi, roughly 75% of the time the prediction was correct. Now i am interested in predicting the threat level of a species not purely as threatened or not but to specific IUCN levels. I have used the predict.lrm function (predict.lrm(model1, type="fitted.ind")) to generate probabilities for each level, and also (predict(model1, traist, type="fitted")) see below. When i call the model the Brier score is 0.201 and C value 0.677. However when i inspect the output and relate it to the corresponding species ( for which i know the true IUCN rating) the model performs very badly, only getting 43% correct. Interestingly i have noticed the probabilities are always highest for levels 1 and 6, on no occasion do levels 2,3,4 or 5 have high probabilities? I am unsure if this is just because the model can not discriminate between the various levels due to insufficient data? Or if i am doing something wrong, if this is the case i would greatly appreciate any advice or suggestion of a different method. Thanks in advance, Chris model1 <- lrm(EXTINCTION~BS*FR+WO+LIF+REG+ALT+BIO+HAB+PD+SEA, x=TRUE,y=TRUE) predict.lrm(model1, type="fitted.ind") EXTINCTION=1 EXTINCTION=2 EXTINCTION=3 EXTINCTION=4 EXTINCTION=5 1 0.19748393 0.05895033 0.12811186 0.086140778 0.068137104 2 0.27790178 0.07247496 0.14384976 0.087487677 0.064584865 3 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 4 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 5 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 6 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 7 0.13928899 0.04558050 0.10636220 0.077770389 0.065500459 8 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 9 0.24605628 0.06777939 0.13931242 0.087996215 0.066625303 10 0.33865077 0.07915126 0.14744522 0.083923247 0.059387585 EXTINCTION=6 1 0.46117600 2 0.35370096 3 0.39223038 4 0.39223038 5 0.39223038 6 0.39223038 7 0.56549746 8 0.39223038 9 0.39223038 predict(model1, traist, type="fitted") y>=2 y>=3 y>=4 y>=5 y>=6 1 0.80251607 0.74356575 0.61545388 0.52931311 0.46117600 2 0.72209822 0.64962327 0.50577351 0.41828583 0.35370096 3 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 4 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 5 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 6 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 7 0.86071101 0.81513051 0.70876831 0.63099792 0.56549746 8 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 9 0.75394372 0.68616432 0.54685190 0.45885569 0.39223038 10 0.66134923 0.58219797 0.43475276 0.35082951 0.29144192 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.