Thank you Dennis,

You identified a factor (text column) that I was concerned with. I simplified my example to try and factor out possible causes. I eliminated the recurring values in columns (which were not the columns that caused problems). I produced three examples with simple data sets.

1. Correct output, 2 columns only:

test.notext = read.csv('test-notext.csv')
cor(test.notext, method='spearman')
               P3     HP_tot
P3      1.0000000 -0.2182876
HP_tot -0.2182876  1.0000000
dput(test.notext)
structure(list(P3 = c(2L, 2L, 2L, 4L, 2L, 3L, 2L, 1L, 3L, 2L,
2L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L),
    HP_tot = c(10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 136L,
    136L, 136L, 136L, 136L, 136L, 136L, 136L, 136L, 136L, 15L,
    15L, 15L, 15L, 15L, 15L, 15L)), .Names = c("P3", "HP_tot"
), class = "data.frame", row.names = c(NA, -25L))

2. Incorrect output where I introduced my P7 column containing text only the 'a' character:

test = read.csv('test.csv')
cor(test, method='spearman')
               P3 P7     HP_tot
P3      1.0000000 NA -0.2502878
P7             NA  1         NA
HP_tot -0.2502878 NA  1.0000000
Warning message:
In cor(test, method = "spearman") : the standard deviation is zero
dput(test)
structure(list(P3 = c(2L, 2L, 2L, 4L, 2L, 3L, 2L, 1L, 3L, 2L,
2L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L),
    P7 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
    ), .Label = "a", class = "factor"), HP_tot = c(10L, 10L,
    10L, 10L, 10L, 10L, 10L, 10L, 136L, 136L, 136L, 136L, 136L,
    136L, 136L, 136L, 136L, 136L, 15L, 15L, 15L, 15L, 15L, 15L,
15L)), .Names = c("P3", "P7", "HP_tot"), class = "data.frame", row.names = c(NA,
-25L))

3. Incorrect output with P7 containing a variety of alpha-numeric characters (ascii), to factor out equal valued column issue. Notice that the text column is interpreted as a numeric value.

test.number = read.csv('test-alpha.csv')
cor(test.number, method='spearman')
               P3         P7     HP_tot
P3      1.0000000  0.4093108 -0.2502878
P7      0.4093108  1.0000000 -0.3807193
HP_tot -0.2502878 -0.3807193  1.0000000
dput(test.number)
structure(list(P3 = c(2L, 2L, 2L, 4L, 2L, 3L, 2L, 1L, 3L, 2L,
2L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L),
    P7 = structure(c(11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L,
    19L, 20L, 21L, 22L, 23L, 24L, 25L, 1L, 2L, 3L, 4L, 5L, 6L,
    7L, 8L, 9L, 10L), .Label = c("0", "1", "2", "3", "4", "5",
    "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h",
    "i", "j", "k", "l", "m", "n", "o"), class = "factor"), HP_tot = c(10L,
    10L, 10L, 10L, 10L, 10L, 10L, 10L, 136L, 136L, 136L, 136L,
    136L, 136L, 136L, 136L, 136L, 136L, 15L, 15L, 15L, 15L, 15L,
15L, 15L)), .Names = c("P3", "P7", "HP_tot"), class = "data.frame", row.names = c(NA,
-25L))

Correct output is obtained by avoiding matrix computation of correlation:
cor(test.number$P3, test.number$HP_tot, method='spearman')
[1] -0.2182876

It seems that a text column corrupts my correlation calculation (only in a matrix calculation). I assumed that text columns would not influence the result of the calculations.

Is this a correct behaviour? If not,I can submit a bug report? If it is, is there a known workaround?

cheers,
Stephane Vaucher

On Thu, 9 Sep 2010, Dennis Murphy wrote:

Did you try taking out P7, which is text? Moreover, if you get a message
saying ' the standard deviation is zero', it means that the entire column is
constant. By definition, the covariance of a constant with a random variable
is 0, but your data consists of values, so cor() understandably throws a
warning that one or more of your columns are constant. Applying the
following to your data (which I named expd instead),  we get

sapply(expd[, -12], var)
         P1           P2           P3           P4           P5
P6
5.433333e-01 1.083333e+00 5.766667e-01 1.083333e+00 6.433333e-01
5.566667e-01
         P8           P9          P10          P11          P12
SITE
5.733333e-01 3.193333e+00 5.066667e-01 2.500000e-01 5.500000e+00
2.493333e+00
     Errors     warnings       Manual        Total        H_tot
HP1.1
9.072840e+03 2.081334e+04 7.433333e-01 3.823500e+04 3.880250e+03
2.676667e+00
      HP1.2        HP1.3        HP1.4       HP_tot        HO1.1
HO1.2
0.000000e+00 2.008440e+03 3.057067e+02 3.827250e+03 8.400000e-01
0.000000e+00
      HO1.3        HO1.4       HO_tot        HU1.1        HU1.2
HU1.3
0.000000e+00 0.000000e+00 8.400000e-01 0.000000e+00 2.100000e-01
2.266667e-01
     HU_tot           HR        L_tot        LP1.1        LP1.2
LP1.3
6.233333e-01 7.433333e-01 3.754610e+03 3.209333e+01 0.000000e+00
2.065010e+03
      LP1.4       LP_tot        LO1.1        LO1.2        LO1.3
LO1.4
2.246233e+02 3.590040e+03 3.684000e+01 0.000000e+00 0.000000e+00
2.840000e+00
     LO_tot        LU1.1        LU1.2        LU1.3       LU_tot
LR_tot
6.000000e+01 0.000000e+00 1.440000e+00 3.626667e+00 8.373333e+00
4.943333e+00
     SP_tot        SP1.1        SP1.2        SP1.3        SP1.4
SP_tot.1
6.911067e+02 4.225000e+01 0.000000e+00 1.009600e+02 4.161600e+02
3.071600e+02
      SO1.1        SO1.2        SO1.3        SO1.4       SO_tot
SU1.1
4.543333e+00 2.500000e-01 0.000000e+00 2.100000e-01 5.250000e+00
0.000000e+00
      SU1.2        SU1.3       SU_tot           SR
1.556667e+00 4.225000e+01 3.504000e+01 4.225000e+01

Which columns are constant?
which(sapply(expd[, -12], var) < .Machine$double.eps)
HP1.2 HO1.2 HO1.3 HO1.4 HU1.1 LP1.2 LO1.2 LO1.3 LU1.1 SP1.2 SO1.3 SU1.1
  19    24    25    26    28    35    40    41    44    51    57    60

I suspect that in your real data set, there aren't so many constant columns,
but this is one way to check.

HTH,
Dennis

On Wed, Sep 8, 2010 at 12:35 PM, Stephane Vaucher <vauch...@iro.umontreal.ca
wrote:

Hi everyone,

I'm observing what I believe is weird behaviour when attempting to do
something very simple. I want a correlation matrix, but my matrix seems to
contain correlation values that are not found when executed on pairs:

 test2$P2

 [1] 2 2 4 4 1 3 2 4 3 3 2 3 4 1 2 2 4 3 4 1 2 3 2 1 3

test2$HP_tot

 [1]  10  10  10  10  10  10  10  10 136 136 136 136 136 136 136 136 136
136  15
[20]  15  15  15  15  15  15 c=cor(test2$P3,test2$HP_tot,method='spearman')

c

[1] -0.2182876

c=cor(test2,method='spearman')

Warning message:
In cor(test2, method = "spearman") : the standard deviation is zero

write(c,file='out.csv')


from my spreadsheet
-0.25028783918741

Most cells are correct, but not that one.

If this is expected behaviour, I apologise for bothering you, I read the
documentation, but I do not know if the calculation of matrices and pairs is
done using the same function (eg, with respect to equal value observations).

If this is not a desired behaviour, I noticed that it only occurs with a
relatively large matrix (I couldn't reproduce on a simple 2 column data
set). There might be a naming error.

 names(test2)

 [1] "ID"                   "NOMBRE"               "MAIL"
 [4] "Age"                  "SEXO"                 "Studies"
 [7] "Hours_Internet"       "Vision.Disabilities"  "Other.disabilities"
[10] "Technology_Knowledge" "Start_Time"           "End_Time"
[13] "Duration"             "P1"                   "P1Book"
[16] "P1DVD"                "P2"                   "P3"
[19] "P4"                   "P5"                   "P6"
[22] "P8"                   "P9"                   "P10"
[25] "P11"                  "P12"                  "P7"
[28] "SITE"                 "Errors"               "warnings"
[31] "Manual"               "Total"                "H_tot"
[34] "HP1.1"                "HP1.2"                "HP1.3"
[37] "HP1.4"                "HP_tot"               "HO1.1"
[40] "HO1.2"                "HO1.3"                "HO1.4"
[43] "HO_tot"               "HU1.1"                "HU1.2"
[46] "HU1.3"                "HU_tot"               "HR"
[49] "L_tot"                "LP1.1"                "LP1.2"
[52] "LP1.3"                "LP1.4"                "LP_tot"
[55] "LO1.1"                "LO1.2"                "LO1.3"
[58] "LO1.4"                "LO_tot"               "LU1.1"
[61] "LU1.2"                "LU1.3"                "LU_tot"
[64] "LR_tot"               "SP_tot"               "SP1.1"
[67] "SP1.2"                "SP1.3"                "SP1.4"
[70] "SP_tot.1"             "SO1.1"                "SO1.2"
[73] "SO1.3"                "SO1.4"                "SO_tot"
[76] "SU1.1"                "SU1.2"                "SU1.3"
[79] "SU_tot"               "SR"

Thank you in advance,
Stephane Vaucher

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.



______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to