Hi:
On Sat, Aug 21, 2010 at 9:29 AM, Xiyan Lon <xiyan...@gmail.com> wrote: > Dear All, > > I have a model to predict time series data for example: > > data(LakeHuron) > Lake.fit <- arima(LakeHuron,order=c(1,0,1)) > This is what Lake.fit contains (an object of class Arima): > names(Lake.fit) [1] "coef" "sigma2" "var.coef" "mask" "loglik" "aic" [7] "arma" "residuals" "call" "series" "code" "n.cond" [13] "model" This provides (gory but necessary) details about the structure of Lake.fit: > str(Lake.fit) List of 13 $ coef : Named num [1:3] 0.745 0.321 579.055 ..- attr(*, "names")= chr [1:3] "ar1" "ma1" "intercept" $ sigma2 : num 0.475 $ var.coef : num [1:3, 1:3] 0.00603 -0.00468 0.00177 -0.00468 0.01289 ... ..- attr(*, "dimnames")=List of 2 .. ..$ : chr [1:3] "ar1" "ma1" "intercept" .. ..$ : chr [1:3] "ar1" "ma1" "intercept" $ mask : logi [1:3] TRUE TRUE TRUE $ loglik : num -103 $ aic : num 214 $ arma : int [1:7] 1 1 0 0 1 0 0 $ residuals: Time-Series [1:98] from 1875 to 1972: 0.703 1.639 -0.679 0.535 -0.736 ... $ call : language arima(x = LakeHuron, order = c(1, 0, 1)) $ series : chr "LakeHuron" $ code : int 0 $ n.cond : int 0 $ model :List of 10 ..$ phi : num 0.745 ..$ theta: num 0.321 ..$ Delta: num(0) ..$ Z : num [1:2] 1 0 ..$ a : num [1:2] 0.90454 0.00412 ..$ P : num [1:2, 1:2] 0 0 0 0 ..$ T : num [1:2, 1:2] 0.745 0 1 0 ..$ V : num [1:2, 1:2] 1 0.321 0.321 0.103 ..$ h : num 0 ..$ Pn : num [1:2, 1:2] 1 0.321 0.321 0.103 - attr(*, "class")= chr "Arima" To access the residuals of the model, try Lake.fit$residuals # or resid(Lake.fit) Some useful plots, perhaps: plot(resid(Lake.fit)) acf(resid(Lake.fit)) pacf(resid(Lake.fit)) To plot the residuals one lag apart, try this: res <- resid(Lake.fit) plot(res[-length(res)], res[-1], xlab = expression(e[t - 1]), ylab = expression(e[t])) HTH, Dennis then the function predict() can be used for predicting future data > with the model: > > LakeH.pred <- predict(Lake.fit,n.ahead=5) > > I can see the result LakeH.pred$pred and LakeH.pred$se but I did not > see residual in predict function. > If I have a model: > > [\ > Z_t = Z_{t-1} + A + e_t + B*e_{t-1} > \] > > How could I find $e_t$ dan $e_{t-1}$ ? > > Best, XY > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.