Dear R Programmers, I am trying to run a Poisson regression on all pairs of variables in a data set and obtain the permutation distribution. The number of pairs is around 100000. It seems my code will take weeks to run, unless I try something else. Could you give me any suggestions on how to improve the speed of the code below, or any general suggestions on how I may accomplish this task. Thanks for your time, Juliet
To run this code, first enter the model matrices (matrices given at bottom): # X_red <- as.matrix(read.table("clipboard",header=F),nrow=18,byrow=T) # X_full <- as.matrix(read.table("clipboard",header=F),nrow=18,byrow=T) library(combinat) # make some example data; the actual data is 700x800 myData <- matrix(sample(c(1:3),500,replace=TRUE),nrow=100,ncol=5) # the response is binary response <- c(rep(1,50),rep(0,50)) # initalize permutation of response 'labels'. perm.response <- response counts <- rep(1,18) # Number of permutations nperm <- 5 # matrix of all pairs of indices all.pairs <- combn2(1:ncol(myData)) # initalize results pmatrix <- matrix(-1,nrow=nperm,ncol=nrow(all.pairs)) getLRTpval <- function(index) { # A contingency table is formed from two columns of the data and the response (3 way table) and made into a vector counts <- as.vector(table(myData[,index[1]],myData[,index[2]], perm.response)); # Add 1 to any count that = 0. counts[counts == 0] <- 1 reduced_model <- glm.fit(X_red,counts,family=poisson(link="log")) full_model <- glm.fit(X_full,counts,family=poisson(link="log")) pval <- pchisq(reduced_model$deviance - full_model$deviance, reduced_model$df.residual - full_model$df.residual, lower.tail= FALSE) } for (perm in 1:nperm) { # Permute the labels perm.response <- sample(response,100,replace=TRUE) pmatrix[perm,] <- apply(all.pairs, 1, getLRTpval) } #X_red 1 1 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 -1 -1 1 -1 -1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1 0 1 -1 -1 1 0 0 -1 -1 1 -1 -1 1 0 1 -1 0 -1 0 1 -1 -1 0 1 1 0 -1 0 -1 1 -1 -1 -1 -1 1 1 1 1 1 1 1 0 1 0 -1 1 0 0 0 1 1 0 0 1 -1 0 1 0 0 1 1 0 -1 -1 -1 -1 -1 0 0 1 0 1 1 0 -1 0 0 1 0 1 0 1 0 1 -1 0 0 0 1 1 0 1 -1 -1 -1 0 0 -1 -1 1 -1 -1 1 0 -1 -1 0 -1 0 1 -1 -1 0 1 -1 0 -1 0 -1 1 -1 -1 -1 -1 -1 1 1 1 1 # X_full 1 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0 -1 -1 1 -1 -1 0 0 1 0 -1 -1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 -1 -1 1 0 0 -1 -1 0 1 -1 -1 1 -1 -1 1 0 1 -1 0 -1 0 -1 -1 1 0 1 -1 -1 0 1 1 0 -1 0 -1 -1 -1 0 1 1 -1 -1 -1 -1 1 1 1 1 1 -1 -1 -1 -1 1 1 0 1 0 -1 1 0 0 0 -1 0 -1 0 1 1 0 0 1 -1 0 1 0 0 -1 0 0 -1 1 1 0 -1 -1 -1 -1 -1 0 0 -1 0 1 1 1 0 1 1 0 -1 0 0 1 0 0 -1 -1 0 1 0 1 0 1 -1 0 0 0 1 0 -1 0 -1 1 0 1 -1 -1 -1 0 0 -1 -1 0 -1 1 1 1 -1 -1 1 0 -1 -1 0 -1 0 1 1 -1 0 1 -1 -1 0 1 -1 0 -1 0 -1 1 1 0 -1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.